

Welcome to Read the Docs

This is an autogenerated index file.

Please create an index.rst or README.rst file with your own content
under the root (or /docs) directory in your repository.

If you want to use another markup, choose a different builder in your settings.
Check out our Getting Started Guide [https://docs.readthedocs.io/en/latest/getting_started.html] to become more
familiar with Read the Docs.

Index

Change Log

v1.9.2

	Add mutation script to fix character encoding of application_name column in phone applications foreground data

	Fix discrepancies between computed episode and event features in PHONE_APPLICATIONS_FOREGROUND RAPIDS provider

	Upgrade cli, lifecycle, lubridate, pillar, and vctrs R packages

	Fix bug that scrambled the column order of resampled episodes when processng multiple time zones and some data fell outside those timezone periods

	Resolve column specification warning messages produced by readable_datetime.R script

	Add Checkout action to Docker workflow for solving an issue that can cause Build & Push action to fail

v1.9.1

	It fixes a library conflict that broke RAPIDS installation

v1.9.0

	Upgrade generics, stringi, Hmisc, ellipsis, glue, rlang, tibble, and vctrs packages

	Optimize memory usage in readable_datetime.R script

	Fix the bug of missing local_segment column in FITBIT_SLEEP_SUMMARY RAPIDS provider

	Add TYPING_SESSION_DURATION parameter for typing sessions detection to PHONE_KEYBOARD RAPIDS provider

	Add steps volatility features

	Add tests for steps volatility features

v1.8.0

	Add data stream for AWARE Micro server

	Fix the NA bug in PHONE_LOCATIONS BARNETT provider

	Fix the bug of data type for call_duration field

	Fix the index bug of heatmap_sensors_per_minute_per_time_segment

v1.7.1

	Update docs for Git Flow section

	Update RAPIDS paper information

v1.7.0

	Add firststeptime and laststeptime features to FITBIT_STEPS_INTRADAY RAPIDS provider

	Update tests for Fitbit steps intraday features

	Add tests for phone battery features

	Add a data cleaning module to replace NAs with 0 in selected event-based features, discard unreliable rows and columns, discard columns with zero variance, and discard highly correlated columns

v1.6.0

	Refactor PHONE_CALLS RAPIDS provider to compute features based on call episodes or events

	Refactor PHONE_LOCATIONS DORYAB provider to compute features based on location episodes

	Temporary revert PHONE_LOCATIONS BARNETT provider to use R script

	Update the default IGNORE_EPISODES_LONGER_THAN to be 6 hours for screen RAPIDS provider

	Fix the bug of step intraday features when INCLUDE_ZERO_STEP_ROWS is False

v1.5.0

	Update Barnett location features with faster Python implementation

	Fix rounding bug in data yield features

	Add tests for data yield, Fitbit and accelerometer features

	Small fixes of documentation

v1.4.1

	Update home page

	Add PHONE_MESSAGES tests

v1.4.0

	Add new Application Foreground episode features and tests

	Update VSCode setup instructions for our Docker container

	Add tests for phone calls features

	Add tests for WiFI features and fix a bug that incorrectly counted the most scanned device within the current time segment instances instead of globally

	Add tests for phone conversation features

	Add tests for Bluetooth features and choose the most scanned device alphabetically when ties exist

	Add tests for Activity Recognition features and fix iOS unknown activity parsing

	Fix Fitbit bug that parsed date-times with the current time zone in rare cases

	Update the visualizations to be more precise and robust with different time segments.

	Fix regression crash of the example analysis workflow

v1.3.0

	Refactor PHONE_LOCATIONS DORYAB provider. Fix bugs and faster execution up to 30x

	New PHONE_KEYBOARD features

	Add a new strategy to infer home location that can handle multiple homes for the same participant

	Add module to exclude sleep episodes from steps intraday features

	Fix PID matching when joining data from multiple participants. Now, we can handle PIDS with an arbitrary format.

	Fix bug that did not correctly parse participants with more than 2 phones or more than 1 wearable

	Fix crash when no phone data yield is needed to process location data (ALL & GPS location providers)

	Remove location rows with the same timestamp based on their accuracy

	Fix PHONE_CONVERSATION bug that produced inaccurate ratio features when time segments were not daily.

	Other minor bug fixes

v1.2.0

	Sleep summary and intraday features are more consistent.

	Add wake and bedtime features for sleep summary data.

	Fix bugs with sleep PRICE features.

	Update home page

	Add contributing guide

v1.1.1

	Fix length of periodic segments on days with DLS

	Fix crash when scraping data for an app that does not exist

	Add tests for phone screen data

v1.1.0

	Add Fitbit calories intraday features

v1.0.1

	Fix crash in chunk_episodes of utils.py for multi time zone data

	Fix crash in BT Doryab provider when the number of clusters is 2

	Fix Fitbit multi time zone inference from phone data (simplify)

	Fix missing columns when the input for phone data yield is empty

	Fix wrong date time labels for event segments for multi time zone data (all labels are computed based on a single tz)

	Fix periodic segment crash when there are no segments to assign (only affects wday, mday, qday, or yday)

	Fix crash in Analysis Workflow with new suffix in segments’ labels

v1.0.0

	Add a new Overview page.

	You can extend RAPIDS with your own data streams. Data streams are data collected with other sensing apps besides AWARE (like Beiwe, mindLAMP), and stored in other data containers (databases, files) besides MySQL.

	Support to analyze Empatica wearable data (thanks to Joe Kim and Brinnae Bent from the DBDP [https://dbdp.org/])

	Support to analyze AWARE data stored in CSV files and InfluxDB databases

	Support to analyze data collected over multiple time zones

	Support for sleep intraday features from the core team and also from the community (thanks to Stephen Price)

	Users can comment on the documentation (powered by utterances).

	SCR_SCRIPT and SRC_LANGUAGE are replaced by SRC_SCRIPT.

	Add RAPIDS new logo

	Move Citation and Minimal Example page to the Setup section

	Add config.yaml validation schema and documentation. Now it’s more difficult to modify the config.yaml file with invalid values.

	Add new time at home Doryab location feature

	Add and home coordinates to the location data file so location providers can build features based on it.

	If you are migrating from RAPIDS 0.4.3 or older, check this guide

v0.4.3

	Fix bug when any of the rows from any sensor do not belong a time segment

v0.4.2

	Update battery testing

	Fix location processing bug when certain columns don’t exist

	Fix HR intraday bug when minutesonZONE features were 0

	Update FAQs

	Fix HR summary bug when restinghr=0 (ignore those rows)

	Fix ROG, location entropy and normalized entropy in Doryab location provider

	Remove sampling frequency dependance in Doryab location provider

	Update documentation of Doryab location provider

	Add new FITBIT_DATA_YIELD RAPIDS provider

	Deprecate Doryab circadian movement feature until it is fixed

v0.4.1

	Fix bug when no error message was displayed for an empty [PHONE_DATA_YIELD][SENSORS] when resampling location data

v0.4.0

	Add four new phone sensors that can be used for PHONE_DATA_YIELD

	Add code so new feature providers can be added for the new four sensors

	Add new clustering algorithm (OPTICS) for Doryab features

	Update default EPS parameter for Doryab location clustering

	Add clearer error message for invalid phone data yield sensors

	Add ALL_RESAMPLED flag and accuracy limit for location features

	Add FAQ about null characters in phone tables

	Reactivate light and wifi tests and update testing docs

	Fix bug when parsing Fitbit steps data

	Fix bugs when merging features from empty time segments

	Fix minor issues in the documentation

v0.3.2

	Update docker and linux instructions to use RSPM binary repo for for faster installation

	Update CI to create a release on a tagged push that passes the tests

	Clarify in DB credential configuration that we only support MySQL

	Add Windows installation instructions

	Fix bugs in the create_participants_file script

	Fix bugs in Fitbit data parsing.

	Fixed Doryab location features context of clustering.

	Fixed the wrong shifting while calculating distance in Doryab location features.

	Refactored the haversine function

v0.3.1

	Update installation docs for RAPIDS’ docker container

	Fix example analysis use of accelerometer data in a plot

	Update FAQ

	Update minimal example documentation

	Minor doc updates

v0.3.0

	Update R and Python virtual environments

	Add GH actions CI support for tests and docker

	Add release and test badges to README

v0.2.6

	Fix old versions banner on nested pages

v0.2.5

	Fix docs deploy typo

v0.2.4

	Fix broken links in landing page and docs deploy

v0.2.3

	Fix participant IDS in the example analysis workflow

v0.2.2

	Fix readme link to docs

v0.2.1

	FIx link to the most recent version in the old version banner

v0.2.0

	Add new PHONE_BLUETOOTH DORYAB provider

	Deprecate PHONE_BLUETOOTH RAPIDS provider

	Fix bug in filter_data_by_segment for Python when dataset was empty

	Minor doc updates

	New FAQ item

v0.1.0

	New and more consistent docs (this website). The previous docs [https://rapidspitt.readthedocs.io/en/latest/] are marked as beta

	Consolidate configuration instructions

	Flexible time segments

	Simplify Fitbit behavioral feature extraction and documentation

	Sensor’s configuration and output is more consistent

	Update visualizations to handle flexible day segments

	Create a RAPIDS execution script that allows re-computation of the pipeline after configuration changes

	Add citation guide

	Update virtual environment guide

	Update analysis workflow example

	Add a Code of Conduct

	Update Team page

Cite RAPIDS and providers

!!! done “RAPIDS and the community”
RAPIDS is a community effort and as such we want to continue recognizing the contributions from other researchers. Besides citing RAPIDS, we ask you to cite any of the authors listed below if you used those sensor providers in your analysis, thank you!

RAPIDS

If you used RAPIDS, please cite this paper [https://www.frontiersin.org/article/10.3389/fdgth.2021.769823].

!!! cite “RAPIDS et al. citation”
Vega, J., Li, M., Aguillera, K., Goel, N., Joshi, E., Khandekar, K., … & Low, C. A. (2021). Reproducible Analysis Pipeline for Data Streams (RAPIDS): Open-Source Software to Process Data Collected with Mobile Devices. Frontiers in Digital Health, 168.

DBDP (all Empatica sensors)

If you computed features using the provider [DBDP] of any of the Empatica sensors (accelerometer, heart rate, temperature, EDA, BVP, IBI, tags) cite this paper [https://www.cambridge.org/core/journals/journal-of-clinical-and-translational-science/article/digital-biomarker-discovery-pipeline-an-open-source-software-platform-for-the-development-of-digital-biomarkers-using-mhealth-and-wearables-data/A6696CEF138247077B470F4800090E63] in addition to RAPIDS.

!!! cite “Bent et al. citation”
Bent, B., Wang, K., Grzesiak, E., Jiang, C., Qi, Y., Jiang, Y., Cho, P., Zingler, K., Ogbeide, F.I., Zhao, A., Runge, R., Sim, I., Dunn, J. (2020). The Digital Biomarker Discovery Pipeline: An open source software platform for the development of digital biomarkers using mHealth and wearables data. Journal of Clinical and Translational Science, 1-28. doi:10.1017/cts.2020.511

Panda (accelerometer)

If you computed accelerometer features using the provider [PHONE_ACCLEROMETER][PANDA] cite this paper [https://pubmed.ncbi.nlm.nih.gov/31657854/] in addition to RAPIDS.

!!! cite “Panda et al. citation”
Panda N, Solsky I, Huang EJ, Lipsitz S, Pradarelli JC, Delisle M, Cusack JC, Gadd MA, Lubitz CC, Mullen JT, Qadan M, Smith BL, Specht M, Stephen AE, Tanabe KK, Gawande AA, Onnela JP, Haynes AB. Using Smartphones to Capture Novel Recovery Metrics After Cancer Surgery. JAMA Surg. 2020 Feb 1;155(2):123-129. doi: 10.1001/jamasurg.2019.4702. PMID: 31657854; PMCID: PMC6820047.

Stachl (applications foreground)

If you computed applications foreground features using the app category (genre) catalogue in [PHONE_APPLICATIONS_FOREGROUND][RAPIDS] cite this paper [https://www.pnas.org/content/117/30/17680] in addition to RAPIDS.

!!! cite “Stachl et al. citation”
Clemens Stachl, Quay Au, Ramona Schoedel, Samuel D. Gosling, Gabriella M. Harari, Daniel Buschek, Sarah Theres Völkel, Tobias Schuwerk, Michelle Oldemeier, Theresa Ullmann, Heinrich Hussmann, Bernd Bischl, Markus Bühner. Proceedings of the National Academy of Sciences Jul 2020, 117 (30) 17680-17687; DOI: 10.1073/pnas.1920484117

Doryab (bluetooth)

If you computed bluetooth features using the provider [PHONE_BLUETOOTH][DORYAB] cite this paper [https://arxiv.org/abs/1812.10394] in addition to RAPIDS.

!!! cite “Doryab et al. citation”
Doryab, A., Chikarsel, P., Liu, X., & Dey, A. K. (2019). Extraction of Behavioral Features from Smartphone and Wearable Data. ArXiv:1812.10394 [Cs, Stat]. http://arxiv.org/abs/1812.10394

Barnett (locations)

If you computed locations features using the provider [PHONE_LOCATIONS][BARNETT] cite this paper [https://doi.org/10.1093/biostatistics/kxy059] and this paper [https://doi.org/10.1145/2750858.2805845] in addition to RAPIDS.

!!! cite “Barnett et al. citation”
Ian Barnett, Jukka-Pekka Onnela, Inferring mobility measures from GPS traces with missing data, Biostatistics, Volume 21, Issue 2, April 2020, Pages e98–e112, https://doi.org/10.1093/biostatistics/kxy059

!!! cite “Canzian et al. citation”
Luca Canzian and Mirco Musolesi. 2015. Trajectories of depression: unobtrusive monitoring of depressive states by means of smartphone mobility traces analysis. In Proceedings of the 2015 ACM International Joint Conference on Pervasive and Ubiquitous Computing (UbiComp ‘15). Association for Computing Machinery, New York, NY, USA, 1293–1304. DOI:https://doi.org/10.1145/2750858.2805845

Doryab (locations)

If you computed locations features using the provider [PHONE_LOCATIONS][DORYAB] cite this paper [https://arxiv.org/abs/1812.10394] and this paper [https://doi.org/10.1145/2750858.2805845] in addition to RAPIDS. In addition, if you used the SUN_LI_VEGA_STRATEGY strategy, cite this paper [https://www.jmir.org/2020/9/e19992/] as well.

!!! cite “Doryab et al. citation”
Doryab, A., Chikarsel, P., Liu, X., & Dey, A. K. (2019). Extraction of Behavioral Features from Smartphone and Wearable Data. ArXiv:1812.10394 [Cs, Stat]. http://arxiv.org/abs/1812.10394

!!! cite “Canzian et al. citation”
Luca Canzian and Mirco Musolesi. 2015. Trajectories of depression: unobtrusive monitoring of depressive states by means of smartphone mobility traces analysis. In Proceedings of the 2015 ACM International Joint Conference on Pervasive and Ubiquitous Computing (UbiComp ‘15). Association for Computing Machinery, New York, NY, USA, 1293–1304. DOI:https://doi.org/10.1145/2750858.2805845

!!! cite “Sun et al. citation”
Sun S, Folarin AA, Ranjan Y, Rashid Z, Conde P, Stewart C, Cummins N, Matcham F, Dalla Costa G, Simblett S, Leocani L, Lamers F, Sørensen PS, Buron M, Zabalza A, Guerrero Pérez AI, Penninx BW, Siddi S, Haro JM, Myin-Germeys I, Rintala A, Wykes T, Narayan VA, Comi G, Hotopf M, Dobson RJ, RADAR-CNS Consortium. Using Smartphones and Wearable Devices to Monitor Behavioral Changes During COVID-19. J Med Internet Res 2020;22(9):e19992

Contributor Covenant Code of Conduct

Our Pledge

We as members, contributors, and leaders pledge to make participation in our
community a harassment-free experience for everyone, regardless of age, body
size, visible or invisible disability, ethnicity, sex characteristics, gender
identity and expression, level of experience, education, socio-economic status,
nationality, personal appearance, race, religion, or sexual identity
and orientation.

We pledge to act and interact in ways that contribute to an open, welcoming,
diverse, inclusive, and healthy community.

Our Standards

Examples of behavior that contributes to a positive environment for our
community include:

	Demonstrating empathy and kindness toward other people

	Being respectful of differing opinions, viewpoints, and experiences

	Giving and gracefully accepting constructive feedback

	Accepting responsibility and apologizing to those affected by our mistakes,
and learning from the experience

	Focusing on what is best not just for us as individuals, but for the
overall community

Examples of unacceptable behavior include:

	The use of sexualized language or imagery, and sexual attention or
advances of any kind

	Trolling, insulting or derogatory comments, and personal or political attacks

	Public or private harassment

	Publishing others’ private information, such as a physical or email
address, without their explicit permission

	Other conduct which could reasonably be considered inappropriate in a
professional setting

Enforcement Responsibilities

Community leaders are responsible for clarifying and enforcing our standards of
acceptable behavior and will take appropriate and fair corrective action in
response to any behavior that they deem inappropriate, threatening, offensive,
or harmful.

Community leaders have the right and responsibility to remove, edit, or reject
comments, commits, code, wiki edits, issues, and other contributions that are
not aligned to this Code of Conduct, and will communicate reasons for moderation
decisions when appropriate.

Scope

This Code of Conduct applies within all community spaces, and also applies when
an individual is officially representing the community in public spaces.
Examples of representing our community include using an official e-mail address,
posting via an official social media account, or acting as an appointed
representative at an online or offline event.

Enforcement

Instances of abusive, harassing, or otherwise unacceptable behavior may be
reported to the community leaders responsible for enforcement at
moshi@pitt.edu.
All complaints will be reviewed and investigated promptly and fairly.

All community leaders are obligated to respect the privacy and security of the
reporter of any incident.

Enforcement Guidelines

Community leaders will follow these Community Impact Guidelines in determining
the consequences for any action they deem in violation of this Code of Conduct:

1. Correction

Community Impact: Use of inappropriate language or other behavior deemed
unprofessional or unwelcome in the community.

Consequence: A private, written warning from community leaders, providing
clarity around the nature of the violation and an explanation of why the
behavior was inappropriate. A public apology may be requested.

2. Warning

Community Impact: A violation through a single incident or series
of actions.

Consequence: A warning with consequences for continued behavior. No
interaction with the people involved, including unsolicited interaction with
those enforcing the Code of Conduct, for a specified period of time. This
includes avoiding interactions in community spaces as well as external channels
like social media. Violating these terms may lead to a temporary or
permanent ban.

3. Temporary Ban

Community Impact: A serious violation of community standards, including
sustained inappropriate behavior.

Consequence: A temporary ban from any sort of interaction or public
communication with the community for a specified period of time. No public or
private interaction with the people involved, including unsolicited interaction
with those enforcing the Code of Conduct, is allowed during this period.
Violating these terms may lead to a permanent ban.

4. Permanent Ban

Community Impact: Demonstrating a pattern of violation of community
standards, including sustained inappropriate behavior, harassment of an
individual, or aggression toward or disparagement of classes of individuals.

Consequence: A permanent ban from any sort of public interaction within
the community.

Attribution

This Code of Conduct is adapted from the Contributor Covenant [https://www.contributor-covenant.org],
version 2.0, available at
https://www.contributor-covenant.org/version/2/0/code_of_conduct.html.

Community Impact Guidelines were inspired by
Mozilla’s code of conduct enforcement ladder [https://github.com/mozilla/diversity].

For answers to common questions about this code of conduct, see the FAQ at
https://www.contributor-covenant.org/faq. Translations are available
at https://www.contributor-covenant.org/translations.

Common Errors

Cannot connect to your MySQL server

???+ failure “Problem”
```bash
Error in .local(drv, ...) : Failed to connect to database: Error:
Can’t initialize character set unknown (path: compiled_in) :

Calls: dbConnect -> dbConnect -> .local -> .Call
Execution halted
[Tue Mar 10 19:40:15 2020]
Error in rule download_dataset:
    jobid: 531
    output: data/raw/p60/locations_raw.csv

RuleException:
CalledProcessError in line 20 of /home/ubuntu/rapids/rules/preprocessing.snakefile:
Command 'set -euo pipefail;  Rscript --vanilla /home/ubuntu/rapids/.snakemake/scripts/tmp_2jnvqs7.download_dataset.R' returned non-zero exit status 1.
File "/home/ubuntu/rapids/rules/preprocessing.snakefile", line 20, in __rule_download_dataset
File "/home/ubuntu/anaconda3/envs/moshi-env/lib/python3.7/concurrent/futures/thread.py", line 57, in run
Shutting down, this might take some time.
Exiting because a job execution failed. Look above for error message
```


???+ done “Solution”
Please make sure the DATABASE_GROUP in config.yaml matches your DB credentials group in .env.

Cannot start mysql in linux via brew services start mysql

???+ failure “Problem”
Cannot start mysql in linux via brew services start mysql

???+ done “Solution”
Use mysql.server start

Every time I run force the download_dataset rule all rules are executed

???+ failure “Problem”
When running snakemake -j1 -R pull_phone_data or ./rapids -j1 -R pull_phone_data all the rules and files are re-computed

???+ done “Solution”
This is expected behavior. The advantage of using snakemake under the hood is that every time a file containing data is modified every rule that depends on that file will be re-executed to update their results. In this case, since download_dataset updates all the raw data, and you are forcing the rule with the flag -R every single rule that depends on those raw files will be executed.

Error Table XXX doesn't exist while running the download_phone_data or download_fitbit_data rule.

???+ failure “Problem”
bash Error in .local(conn, statement, ...) : could not run statement: Table 'db_name.table_name' doesn't exist Calls: colnameslocal -> dbSendQuery -> dbSendQuery -> .local -> .Call Execution halted

???+ done “Solution”
Please make sure the sensors listed in [PHONE_VALID_SENSED_BINS][PHONE_SENSORS] and the [CONTAINER] of each sensor you activated in config.yaml match your database tables or files.

How do I install RAPIDS on Ubuntu 16.04

???+ done “Solution”
1. Install dependencies (Homebrew - if not installed):
- sudo apt-get install libmariadb-client-lgpl-dev libxml2-dev libssl-dev
- Install brew [https://docs.brew.sh/Homebrew-on-Linux] for linux and add the following line to ~/.bashrc: export PATH=$HOME/.linuxbrew/bin:$PATH
- source ~/.bashrc

1. Install MySQL
 - `brew install mysql`
 - `brew services start mysql`

2. Install R, pandoc and rmarkdown:
 - `brew install r`
 - `brew install gcc@6` (needed due to this [bug](https://github.com/Homebrew/linuxbrew-core/issues/17812))
 - `HOMEBREW_CC=gcc-6 brew install pandoc`

3. Install miniconda using these [instructions](https://docs.conda.io/projects/conda/en/latest/user-guide/install/linux.html)

4. Clone our repo:
 - `git clone https://github.com/carissalow/rapids`

5. Create a python virtual environment:
 - `cd rapids`
 - `conda env create -f environment.yml -n MY_ENV_NAME`
 - `conda activate MY_ENV_NAME`

6. Install R packages and virtual environment:
 - `snakemake renv_install`
 - `snakemake renv_init`
 - `snakemake renv_restore`

 This step could take several minutes to complete. Please be patient and let it run until completion.

mysql.h cannot be found

???+ failure “Problem”
bash --------------------------[ERROR MESSAGE]---------------------------- <stdin>:1:10: fatal error: mysql.h: No such file or directory compilation terminated. --- ERROR: configuration failed for package 'RMySQL'

???+ done “Solution”
bash sudo apt install libmariadbclient-dev

No package libcurl found

???+ failure “Problem”
libcurl cannot be found

???+ done “Solution”
Install libcurl
bash sudo apt install libcurl4-openssl-dev

Configuration failed because openssl was not found.

???+ failure “Problem”
openssl cannot be found

???+ done “Solution”
Install openssl
bash sudo apt install libssl-dev

Configuration failed because libxml-2.0 was not found

???+ failure “Problem”
libxml-2.0 cannot be found

???+ done “Solution”
Install libxml-2.0
bash sudo apt install libxml2-dev

SSL connection error when running RAPIDS

???+ failure “Problem”
You are getting the following error message when running RAPIDS:
bash Error: Failed to connect: SSL connection error: error:1425F102:SSL routines:ssl_choose_client_version:unsupported protocol.

???+ done “Solution”
This is a bug in Ubuntu 20.04 when trying to connect to an old MySQL server with MySQL client 8.0. You should get the same error message if you try to connect from the command line. There you can add the option --ssl-mode=DISABLED but we can’t do this from the R connector.

If you can\'t update your server, the quickest solution would be to import your database to another server or to a local environment. Alternatively, you could replace `mysql-client` and `libmysqlclient-dev` with `mariadb-client` and `libmariadbclient-dev` and reinstall renv. More info about this issue [here](https://bugs.launchpad.net/ubuntu/+source/mysql-8.0/+bug/1872541)

DB_TABLES key not found

???+ failure “Problem”
If you get the following error KeyError in line 43 of preprocessing.smk: 'PHONE_SENSORS', it means that the indentation of the key [PHONE_SENSORS] is not matching the other child elements of PHONE_VALID_SENSED_BINS

???+ done “Solution”
You need to add or remove any leading whitespaces as needed on that line.

```yaml
PHONE_VALID_SENSED_BINS:
    COMPUTE: False # This flag is automatically ignored (set to True) if you are extracting PHONE_VALID_SENSED_DAYS or screen or Barnett's location features
    BIN_SIZE: &bin_size 5 # (in minutes)
    PHONE_SENSORS: []
```


Error while updating your conda environment in Ubuntu

???+ failure “Problem”
You get the following error:
bash CondaMultiError: CondaVerificationError: The package for tk located at /home/ubuntu/miniconda2/pkgs/tk-8.6.9-hed695b0_1003 appears to be corrupted. The path 'include/mysqlStubs.h' specified in the package manifest cannot be found. ClobberError: This transaction has incompatible packages due to a shared path. packages: conda-forge/linux-64::llvm-openmp-10.0.0-hc9558a2_0, anaconda/linux-64::intel-openmp-2019.4-243 path: 'lib/libiomp5.so'

???+ done “Solution”
Reinstall conda

Embedded nul in string

???+ failure “Problem”
You get the following error when downloading sensor data:
bash Error in result_fetch(res@ptr, n = n) : embedded nul in string:

???+ done “Solution”
This problem is due to the way RMariaDB handles a mismatch between data types in R and MySQL (see this issue [https://github.com/r-dbi/RMariaDB/issues/121]). Since it seems this problem won’t be handled by RMariaDB, you have two options:

1. Remove the the null character from the conflictive table cell(s). You can adapt the following query on a MySQL server 8.0 or older
    ```sql
    update YOUR_TABLE set YOUR_COLUMN = regexp_replace(YOUR_COLUMN, '\0', '');
    ```
2. If it's not feasible to modify your data you can try swapping `RMariaDB` with `RMySQL`. Just have in mind you might have problems connecting to modern MySQL servers running in Linux:
 - Add `RMySQL` to the renv environment by running the following command in a terminal open on RAPIDS root folder
    ```bash
    R -e 'renv::install("RMySQL")'
    ```
 - Go to `src/data/streams/pull_phone_data.R` or `src/data/streams/pull_fitbit_data.R` and replace `library(RMariaDB)` with `library(RMySQL)`
 - In the same file(s) replace `dbEngine <- dbConnect(MariaDB(), default.file = "./.env", group = group)` with `dbEngine <- dbConnect(MySQL(), default.file = "./.env", group = group)`

There is no package called RMariaDB

???+ failure “Problem”
You get the following error when executing RAPIDS:
bash Error in library(RMariaDB) : there is no package called 'RMariaDB' Execution halted

???+ done “Solution”
In RAPIDS v0.1.0 we replaced RMySQL R package with RMariaDB, this error means your R virtual environment is out of date, to update it run snakemake -j1 renv_restore

Unrecognized output timezone “America/New_York”

???+ failure “Problem”
When running RAPIDS with R 4.0.3 on MacOS on M1, lubridate may throw an error associated with the timezone.
bash Error in C_force_tz(time, tz = tzone, roll): CCTZ: Unrecognized output timezone: "America/New_York" Calls: get_timestamp_filterparse_date_time -> .strptime -> force_tz -> C_force_tz
???+ done “Solution”
This is because R timezone library is not set. Please add Sys.setenv(“TZDIR” = file.path(R.home(), “share”, “zoneinfo”)) to the file active.R in renv folder to set the timezone library. For further details on how to test if TZDIR is properly set, please refer to https://github.com/tidyverse/lubridate/issues/928#issuecomment-720059233.

Unimplemented MAX_NO_FIELD_TYPES

???+ failure “Problem”
You get the following error when downloading Fitbit data:
bash Error: Unimplemented MAX_NO_FIELD_TYPES Execution halted
???+ done “Solution”
At the moment RMariaDB cannot handle [https://github.com/r-dbi/RMariaDB/issues/127] MySQL columns of JSON type. Change the type of your Fitbit data column to longtext (note that the content will not change and will still be a JSON object just interpreted as a string).

Running RAPIDS on Apple Silicon M1 Mac

???+ failure “Problem”
You get the following error when installing pandoc or running rapids:
bash MoSHI/rapids/renv/staging/1/00LOCK-KernSmooth/00new/KernSmooth/libs/KernSmooth.so: mach-0, but wrong architecture
???+ done “Solution”
As of Feb 2020 in M1 macs, R needs to be installed via brew under Rosetta (x86 arch) due to some incompatibility with selected R libraries. To do this, run your terminal via Rosetta [https://www.youtube.com/watch?v=nv2ylxro7rM&t=138s], then proceed with the usual brew installation command. x86 homebrew should be installed in /usr/local/bin/brew , you can check which brew you are using by typing which brew. Then use x86 homebrew to install R and restore RAPIDS packages (renv_restore).

Contributing

Thank you for taking the time to contribute!

All changes, small or big, are welcome, and regardless of who you are, we are always happy to work together to make your contribution as strong as possible. We follow the Covenant Code of Conduct, so we ask you to uphold it. Be kind to everyone in the community, and please report unacceptable behavior to moshiresearch@gmail.com.

Questions, Feature Requests, and Discussions

Post any questions, feature requests, or discussions in our GitHub Discussions tab [https://github.com/carissalow/rapids/discussions].

Bug Reports

Report any bugs in our GithHub issue tracker [https://github.com/carissalow/rapids/issues] keeping in mind to:

	Debug and simplify the problem to create a minimal example. For example, reduce the problem to a single participant, sensor, and a few rows of data.

	Provide a clear and succinct description of the problem (expected behavior vs. actual behavior).

	Attach your config.yaml, time segments file, and time zones file if appropriate.

	Attach test data if possible and any screenshots or extra resources that will help us debug the problem.

	Share the commit you are running: git rev-parse --short HEAD

	Share your OS version (e.g., Windows 10)

	Share the device/sensor you are processing (e.g., phone accelerometer)

Documentation Contributions

If you want to fix a typo or any other minor changes, you can edit the file online by clicking on the pencil icon at the top right of any page and opening a pull request using Github’s website [https://docs.github.com/en/github/managing-files-in-a-repository/editing-files-in-your-repository]

If your changes are more complex, clone RAPIDS’ repository, setup the dev environment for our documentation with this tutorial, and submit any changes on a new feature branch following our git flow.

Code Contributions

!!! hint “Hints for any code changes”
- To submit any new code, use a new feature branch following our git flow.
- If you neeed a new Python or R package in RAPIDS’ virtual environments, follow this tutorial
- If you need to change the config.yaml you will need to update its validation schema with this tutorial

New Data Streams

New data containers. If you want to process data from a device RAPIDS supports (see this table) but it’s stored in a database engine or file type we don’t support yet, implement a new data stream container and format. You can copy and paste the format.yaml of one of the other streams of the device you are targeting.

New sensing apps. If you want to add support for new smartphone sensing apps like Beiwe, implement a new data stream container and format.

New wearable devices. If you want to add support for a new wearable, open a Github discussion [https://github.com/carissalow/rapids/discussions], so we can add the necessary initial configuration files and code.

New Behavioral Features

If you want to add new behavioral features for mobile sensors RAPIDS already supports, follow this tutorial. A sensor is supported if it has a configuration section in config.yaml.

If you want to add new behavioral features for mobile sensors RAPIDS does not support yet, open a Github discussion [https://github.com/carissalow/rapids/discussions], so we can add the necessary initial configuration files and code.

New Tests

If you want to add new tests for existent behavioral features, follow this tutorial.

New Visualizations

Open a Github discussion [https://github.com/carissalow/rapids/discussions], so we can add the necessary initial configuration files and code.

Migration guides

Migrating from RAPIDS 0.4.x or older

There are four actions that you need to take if you were using RAPIDS 0.4.3 or older (before Feb 9th, 2021 [https://github.com/carissalow/rapids/releases/tag/v0.4.3]):

??? check “Check the new Overview page”
Check the new Overview page. Hopefully, it is a better overview of RAPIDS and provides answers to Frequently Asked Questions.

??? check “Deploy RAPIDS in a new folder”

 - Clone RAPIDS 1.x in a new folder (do not pull the updates in your current folder)
 - Activate your conda environment
 - Install renv again `snakemake -j1 renv_install` (for Ubuntu take advantage of the [platform specific R `renv` instructions](../setup/installation))
 - Restore renv packages `snakemake -j1 renv_restore` (for Ubuntu take advantage of the [platform specific R `renv` instructions](../setup/installation))
 - Move your participant files `pxx.yaml` to the new folder
 - Move your time segment files to the new folder
 - Move your `.env` file to the new folder

??? check “Migrate your .env file to the new credentials.yaml format”
The .env file is not used anymore, the same credential groups are stored in credentials.yaml, migrate your .env file by running:
bash python tools/update_format_env.py

??? check “Reconfigure your config.yaml”
Reconfigure your config.yaml file by hand (don’t copy and paste the old one). Some keys and values changed but the defaults should be compatible with the things you know from RAPIDS 0.x (see below).

The most relevant changes to RAPIDS that you need to know about are:

??? danger “We introduced the concept of data streams”

 RAPIDS abstracts sensor data logged by different devices, platforms and stored in different data containers as [data streams](../datastreams/data-streams-introduction/).

 The default data stream for `PHONE` is [`aware_mysql`](../datastreams/aware-mysql/), and the default for `FITBIT` is [`fitbitjson_mysql`](../datastreams/fitbitjson-mysql/). This is compatible with the old functionality (AWARE and JSON Fitbit data stored in MySQL). These values are set in `[PHONE_DATA_STREAMS][USE]` and `[FITBIT_DATA_STREAMS][USE]`.

 You can [add new data stream](../datastreams/add-new-data-streams/) formats (sensing apps) and containers (database engines, file types, etc.).

 If you were processing your Fitbit data either in JSON or plain text (parsed) format, and it was stored in MySQL or CSV files, the changes that you made to your raw data will be compatible. Just choose [`fitbitjson_mysql`](../datastreams/fitbitjson-mysql/), [`fitbitparsed_mysql`](../datastreams/fitbitparsed-mysql/), [`fitbitjson_csv`](../datastreams/fitbitjson-csv/), [`fitbitparsed_csv`](../datastreams/fitbitparsed-csv/) accordingly and set it in `[FITBIT_DATA_STREAMS][USE]`.

 In the future, you will not have to change your raw data; you will be able to just change column mappings/values in the data stream's `format.yaml` file.

??? danger “We introduced multiple time zones”
You can now process data from participants that visited multiple time zones. The default is still a single time zone (America/New_York). See how to handle multiple time zones

??? danger “The keyword multiple is now infer”
When processing data from smartphones, RAPIDS allows you to infer the OS of a smartphone by using the keyword multiple in the [PLATFORM] key of participant files. Now RAPIDS uses infer instead of multiple Nonetheless, multiple still works for backward compatibility.

??? danger “A global DATABASE_GROUP does not exist anymore”
There is no global DATABASE_GROUP anymore. Each data stream that needs credentials to connect to a database has its own DATABASE_GROUP config key. The groups are defined in credentials.yaml instead of the .env.

??? danger “[DEVICE_SENSOR][TABLE] is now [DEVICE_SENSOR][CONTAINER]”
We renamed the keys [DEVICE_SENSOR][TABLE] to [DEVICE_SENSOR][CONTAINER] to reflect that, with the introduction of data streams, they can point to a database table, file, or any other data container.

??? danger “Creating participant files from the AWARE_DEVICE_TABLE is deprecated”
In previous versions of RAPIDS, you could create participant files automatically using the aware_device table. We deprecated this option but you can still achieve the same results if you export the output of the following SQL query as a CSV file and follow the instructions to create participant files from CSV files:

```sql
SELECT device_id, device_id as fitbit_id, CONCAT("p", _id) as empatica_id, CONCAT("p", _id) as pid, if(brand = "iPhone", "ios", "android") as platform, CONCAT("p", _id)  as label, DATE_FORMAT(FROM_UNIXTIME((timestamp/1000)- 86400), "%Y-%m-%d") as start_date, CURRENT_DATE as end_date from aware_device order by _id;
```


??? danger “SCR_SCRIPT and SRC_LANGUAGE are replaced by SRC_SCRIPT”
The attributes SCR_SCRIPT and SRC_LANGUAGE of every sensor PROVIDER are replaced by SRC_SCRIPT. SRC_SCRIPT is a relative path from the RAPIDS root folder to that provider’s feature script. We did this to simplify and clarify where the features scripts are stored.

There are no actions to take unless you created your own feature provider; update it with your feature script path.

Migrating from RAPIDS beta

If you were relying on the old docs [https://rapidspitt.readthedocs.io/en/latest/] and the most recent version of RAPIDS you are working with is from or before Oct 13, 2020 [https://github.com/carissalow/rapids/commit/640890c7b49492d150accff5c87b1eb25bd97a49] you are using the beta version of RAPIDS.

You can start using the RAPIDS 0.1.0 right away, just take into account the following:

??? check “Deploy RAPIDS in a new folder”
- Install a new copy of RAPIDS (the R and Python virtual environments didn’t change so the cached versions will be reused)
- Make sure you don’t skip a new Installation step to give execution permissions to the RAPIDS script: chmod +x rapids
- Move your old .env file
- Move your participant files

??? check “Migrate your participant files”
You can migrate your old participant files to the new YAML format:
bash python tools/update_format_participant_files.py

??? check “Follow the new Configuration guide”
Follow the new Configuration [https://www.rapids.science/0.1/setup/configuration/] guide

??? check “Learn more about the new way to run RAPIDS”
Get familiar with the new way of Executing [https://www.rapids.science/0.1/setup/execution] RAPIDS

RAPIDS Team

If you are interested in contributing feel free to submit a pull request or contact us.

Core Team

Julio Vega (Designer and Lead Developer)

??? abstract “About”
Julio Vega is a postdoctoral associate at the Mobile Sensing + Health Institute. He is interested in personalized methodologies to monitor chronic conditions that affect daily human behavior using mobile and wearable data.

Meng Li

??? abstract “About”
Meng Li received her Master of Science degree in Information Science from the University of Pittsburgh. She is interested in applying machine learning algorithms to the medical field.

- *lim11* at *upmc* . *edu*
- [Github Profile](https://github.com/Meng6)

Abhineeth Reddy Kunta

??? abstract “About”
Abhineeth Reddy Kunta is a Senior Software Engineer with the Mobile Sensing + Health Institute. He is experienced in software development and specializes in building solutions using machine learning. Abhineeth likes exploring ways to leverage technology in advancing medicine and education. Previously he worked as a Computer Programmer at Georgia Department of Public Health. He has a master’s degree in Computer Science from George Mason University.

Kwesi Aguillera

??? abstract “About”
Kwesi Aguillera is currently in his first year at the University of Pittsburgh pursuing a Master of Sciences in Information Science specializing in Big Data Analytics. He received his Bachelor of Science degree in Computer Science and Management from the University of the West Indies. Kwesi considers himself a full stack developer and looks forward to applying this knowledge to big data analysis.

- [Linkedin Profile](https://www.linkedin.com/in/kwesi-aguillera-29529823)

Echhit Joshi

??? abstract “About”
Echhit Joshi is a Masters student at the School of Computing and Information at University of Pittsburgh. His areas of interest are Machine/Deep Learning, Data Mining, and Analytics.

- [Linkedin Profile](https://www.linkedin.com/in/echhitjoshi/)

Nicolas Leo

??? abstract “About”
Nicolas is a rising senior studying computer science at the University of Pittsburgh. His academic interests include databases, machine learning, and application development. After completing his undergraduate degree, he plans to attend graduate school for a MS in Computer Science with a focus on Intelligent Systems.

Nikunj Goel

??? abstract “About”
Nik is a graduate student at the University of Pittsburgh pursuing Master of Science in Information Science. He earned his Bachelor of Technology degree in Information Technology from India. He is a Data Enthusiast and passionate about finding the meaning out of raw data. In a long term, his goal is to create a breakthrough in Data Science and Deep Learning.

- [Linkedin Profile](https://www.linkedin.com/in/nikunjgoel95/)

Kirtiraj Khandekar

??? abstract “About”
Raj is a graduate student at the University of Pittsburgh pursuing Master of Science in Information Science.

Weiyu Huang

??? abstract “About”
Weiyu is a graduate student at the University of Pittsburgh pursuing Master of Science in Information Science.

- [Github Profile](https://github.com/ChinW97)

Community Contributors

Agam Kumar

??? abstract “About”
Agam is a junior at Carnegie Mellon University studying Statistics and Machine Learning and pursuing an additional major in Computer Science. He is a member of the Data Science team in the Health and Human Performance Lab at CMU and has keen interests in software development and data science. His research interests include ML applications in medicine.

- [Linkedin Profile](https://www.linkedin.com/in/agam-kumar)
- [Github Profile](https://github.com/agam-kumar)

Yasaman S. Sefidgar

??? abstract “About”
- Linkedin Profile [https://www.linkedin.com/in/ysefidgar/]

Joe Kim

??? abstract “About”
- Personal Website [https://www.juseongjoekim.com/]

Brinnae Bent

??? abstract “About”
- Personal Website [https://runsdata.org/]

Stephen Price

??? abstract “About”
Carnegie Mellon University

Neil Singh

??? abstract “About”
University of Virginia

Ian Barnett

??? abstract “About”
University of Pennsylvania
- Profile [https://www.dbei.med.upenn.edu/bio/ian-j-barnett-phd]

Shirley Anugrah Hayati

??? abstract “About”
University of Pennsylvania
- Personal Website [https://www.shirley.id/]

Advisors

Afsaneh Doryab

??? abstract “About”
- Personal Website [https://sites.google.com/view/afsanehdoryab]

Carissa Low

??? abstract “About”
- Profile [https://www.moshi.pitt.edu/people/carissa-low-phd]

Analysis Workflow Example

!!! info “TL;DR”
- In addition to using RAPIDS to extract behavioral features, create plots, and clean sensor features, you can structure your data analysis within RAPIDS (i.e. creating ML/statistical models and evaluating your models)
- We include an analysis example in RAPIDS that covers raw data processing, feature extraction, cleaning, machine learning modeling, and evaluation
- Use this example as a guide to structure your own analysis within RAPIDS
- RAPIDS analysis workflows are compatible with your favorite data science tools and libraries
- RAPIDS analysis workflows are reproducible and we encourage you to publish them along with your research papers

Why should I integrate my analysis in RAPIDS?

Even though the bulk of RAPIDS current functionality is related to the computation of behavioral features, we recommend RAPIDS as a complementary tool to create a mobile data analysis workflow. This is because the cookiecutter data science file organization guidelines, the use of Snakemake, the provided behavioral features, and the reproducible R and Python development environments allow researchers to divide an analysis workflow into small parts that can be audited, shared in an online repository, reproduced in other computers, and understood by other people as they follow a familiar and consistent structure. We believe these advantages outweigh the time needed to learn how to create these workflows in RAPIDS.

We clarify that to create analysis workflows in RAPIDS, researchers can still use any data manipulation tools, editors, libraries or languages they are already familiar with. RAPIDS is meant to be the final destination of analysis code that was developed in interactive notebooks or stand-alone scripts. For example, a user can compute call and location features using RAPIDS, then, they can use Jupyter notebooks to explore feature cleaning approaches and once the cleaning code is final, it can be moved to RAPIDS as a new step in the pipeline. In turn, the output of this cleaning step can be used to explore machine learning models and once a model is finished, it can also be transferred to RAPIDS as a step of its own. The idea is that when it is time to publish a piece of research, a RAPIDS workflow can be shared in a public repository as is.

In the following sections we share an example of how we structured an analysis workflow in RAPIDS.

Analysis workflow structure

To accurately reflect the complexity of a real-world modeling scenario, we decided not to oversimplify this example. Importantly, every step in this example follows a basic structure: an input file and parameters are manipulated by an R or Python script that saves the results to an output file. Input files, parameters, output files and scripts are grouped into Snakemake rules that are described on smk files in the rules folder (we point the reader to the relevant rule(s) of each step).

Researchers can use these rules and scripts as a guide to create their own as it is expected every modeling project will have different requirements, data and goals but ultimately most follow a similar chainned pattern.

!!! hint
The example’s config file is example_profile/example_config.yaml and its Snakefile is in example_profile/Snakefile. The config file is already configured to process the sensor data as explained in Analysis workflow modules.

Description of the study modeled in our analysis workflow example

Our example is based on a hypothetical study that recruited 2 participants that underwent surgery and collected mobile data for at least one week before and one week after the procedure. Participants wore a Fitbit device and installed the AWARE client in their personal Android and iOS smartphones to collect mobile data 24/7. In addition, participants completed daily severity ratings of 12 common symptoms on a scale from 0 to 10 that we summed up into a daily symptom burden score.

The goal of this workflow is to find out if we can predict the daily symptom burden score of a participant. Thus, we framed this question as a binary classification problem with two classes, high and low symptom burden based on the scores above and below average of each participant. We also want to compare the performance of individual (personalized) models vs a population model.

In total, our example workflow has nine steps that are in charge of sensor data preprocessing, feature extraction, feature cleaning, machine learning model training and model evaluation (see figure below). We ship this workflow with RAPIDS and share files with test data [https://osf.io/wbg23/] in an Open Science Framework repository.

 Modules of RAPIDS example workflow, from raw data to model evaluation

Configure and run the analysis workflow example

	Install RAPIDS

	Unzip the CSV files inside rapids_example_csv.zip [https://osf.io/wbg23/] in data/external/example_workflow/*.csv.

	Create the participant files for this example by running:

./rapids -j1 create_example_participant_files

	Run the example pipeline with:

./rapids -j1 --profile example_profile

Note you will see a lot of warning messages, you can ignore them since they happen because we ran ML algorithms with a small fake dataset.

Modules of our analysis workflow example

??? info “1. Feature extraction”
We extract daily behavioral features for data yield, received and sent messages, missed, incoming and outgoing calls, resample fused location data using Doryab provider, activity recognition, battery, Bluetooth, screen, light, applications foreground, conversations, Wi-Fi connected, Wi-Fi visible, Fitbit heart rate summary and intraday data, Fitbit sleep summary data, and Fitbit step summary and intraday data without excluding sleep periods with an active bout threshold of 10 steps. In total, we obtained 245 daily sensor features over 12 days per participant.

??? info “2. Extract demographic data.”
It is common to have demographic data in addition to mobile and target (ground truth) data. In this example we include participants’ age, gender and the number of days they spent in hospital after their surgery as features in our model. We extract these three columns from the data/external/example_workflow/participant_info.csv file. As these three features remain the same within participants, they are used only on the population model. Refer to the demographic_features rule in rules/models.smk.

??? info “3. Create target labels.”
The two classes for our machine learning binary classification problem are high and low symptom burden. Target values are already stored in the data/external/example_workflow/participant_target.csv file. A new rule/script can be created if further manipulation is necessary. Refer to the parse_targets rule in rules/models.smk.

??? info “4. Feature merging.”
These daily features are stored on a CSV file per sensor, a CSV file per participant, and a CSV file including all features from all participants (in every case each column represents a feature and each row represents a day). Refer to the merge_sensor_features_for_individual_participants and merge_sensor_features_for_all_participants rules in rules/features.smk.

??? info “5. Data visualization.”
At this point the user can use the five plots RAPIDS provides (or implement new ones) to explore and understand the quality of the raw data and extracted features and decide what sensors, days, or participants to include and exclude. Refer to rules/reports.smk to find the rules that generate these plots.

??? info “6. Feature cleaning.”
In this stage we perform four steps to clean our sensor feature file. First, we discard days with a data yield hour ratio less than or equal to 0.75, i.e. we include days with at least 18 hours of data. Second, we drop columns (features) with more than 30% of missing rows. Third, we drop columns with zero variance. Fourth, we drop rows (days) with more than 30% of missing columns (features). In this cleaning stage several parameters are created and exposed in example_profile/example_config.yaml.

After this step, we kept 173 features over 11 days for the individual model of p01, 101 features over 12 days for the individual model of p02 and 117 features over 22 days for the population model. Note that the difference in the number of features between p01 and p02 is mostly due to iOS restrictions that stops researchers from collecting the same number of sensors than in Android phones.

Feature cleaning for the individual models is done in the `clean_sensor_features_for_individual_participants` rule and for the population model in the `clean_sensor_features_for_all_participants` rule in `rules/models.smk`.

??? info “7. Merge features and targets.”
In this step we merge the cleaned features and target labels for our individual models in the merge_features_and_targets_for_individual_model rule in rules/features.smk. Additionally, we merge the cleaned features, target labels, and demographic features of our two participants for the population model in the merge_features_and_targets_for_population_model rule in rules/features.smk. These two merged files are the input for our individual and population models.

??? info “8. Modelling.”
This stage has three phases: model building, training and evaluation.

In the building phase we impute, normalize and oversample our dataset. Missing numeric values in each column are imputed with their mean and we impute missing categorical values with their mode. We normalize each numeric column with one of three strategies (min-max, z-score, and scikit-learn package’s robust scaler) and we one-hot encode each categorial feature as a numerical array. We oversample our imbalanced dataset using SMOTE (Synthetic Minority Over-sampling Technique) or a Random Over sampler from scikit-learn. All these parameters are exposed in `example_profile/example_config.yaml`.

In the training phase, we create eight models: logistic regression, k-nearest neighbors, support vector machine, decision tree, random forest, gradient boosting classifier, extreme gradient boosting classifier and a light gradient boosting machine. We cross-validate each model with an inner cycle to tune hyper-parameters based on the Macro F1 score and an outer cycle to predict the test set on a model with the best hyper-parameters. Both cross-validation cycles use a leave-one-out strategy. Parameters for each model like weights and learning rates are exposed in `example_profile/example_config.yaml`.

Finally, in the evaluation phase we compute the accuracy, Macro F1, kappa, area under the curve and per class precision, recall and F1 score of all folds of the outer cross-validation cycle.

Refer to the `modelling_for_individual_participants` rule for the individual modeling and to the `modelling_for_all_participants` rule for the population modeling, both in `rules/models.smk`.

??? info “9. Compute model baselines.”
We create three baselines to evaluate our classification models.

First, a majority classifier that labels each test sample with the majority class of our training data. Second, a random weighted classifier that predicts each test observation sampling at random from a binomial distribution based on the ratio of our target labels. Third, a decision tree classifier based solely on the demographic features of each participant. As we do not have demographic features for individual model, this baseline is only available for population model.

Our baseline metrics (e.g. accuracy, precision, etc.) are saved into a CSV file, ready to be compared to our modeling results. Refer to the `baselines_for_individual_model` rule for the individual model baselines and to the `baselines_for_population_model` rule for population model baselines, both in `rules/models.smk`.

Data Cleaning

The goal of this module is to perform basic clean tasks on the behavioral features that RAPIDS computes. You might need to do further processing depending on your analysis objectives. This module can clean features at the individual level and at the study level. If you are interested in creating individual models (using each participant’s features independently of the others) use [ALL_CLEANING_INDIVIDUAL]. If you are interested in creating population models (using everyone’s data in the same model) use [ALL_CLEANING_OVERALL]

Clean sensor features for individual participants

!!! info “File Sequence”
bash - data/processed/features/{pid}/all_sensor_features.csv - data/processed/features/{pid}/all_sensor_features_cleaned_{provider_key}.csv

RAPIDS provider

Parameters description for [ALL_CLEANING_INDIVIDUAL][PROVIDERS][RAPIDS]:

|Key | Description |
|—————-|———–
|[COMPUTE] | Set to True to execute the cleaning tasks described below. You can use the parameters of each task to tweak them or deactivate them|
|[IMPUTE_SELECTED_EVENT_FEATURES] | Fill NAs with 0 only for event-based features, see table below
|[COLS_NAN_THRESHOLD] | Discard columns with missing value ratios higher than [COLS_NAN_THRESHOLD]. Set to 1 to disable
|[COLS_VAR_THRESHOLD] | Set to True to discard columns with zero variance
|[ROWS_NAN_THRESHOLD] | Discard rows with missing value ratios higher than [ROWS_NAN_THRESHOLD]. Set to 1 to disable
|[DATA_YIELD_FEATURE] | RATIO_VALID_YIELDED_HOURS or RATIO_VALID_YIELDED_MINUTES
|[DATA_YIELD_RATIO_THRESHOLD] | Discard rows with ratiovalidyieldedhours or ratiovalidyieldedminutes feature less than [DATA_YIELD_RATIO_THRESHOLD]. The feature name is determined by [DATA_YIELD_FEATURE] parameter. Set to 0 to disable
|DROP_HIGHLY_CORRELATED_FEATURES | Discard highly correlated features, see table below

Parameters description for [ALL_CLEANING_INDIVIDUAL][PROVIDERS][RAPIDS][IMPUTE_SELECTED_EVENT_FEATURES]:

|Parameters | Description |
|————————————– |—————————————————————-|
|[COMPUTE] | Set to True to fill NAs with 0 for phone event-based features
|[MIN_DATA_YIELDED_MINUTES_TO_IMPUTE] | Any feature value in a time segment instance with phone data yield > [MIN_DATA_YIELDED_MINUTES_TO_IMPUTE] will be replaced with a zero. See below for an explanation. |

Parameters description for [ALL_CLEANING_INDIVIDUAL][PROVIDERS][RAPIDS][DROP_HIGHLY_CORRELATED_FEATURES]:

|Parameters | Description |
|————————————– |—————————————————————-|
|[COMPUTE] | Set to True to drop highly correlated features
|[MIN_OVERLAP_FOR_CORR_THRESHOLD] | Minimum ratio of observations required per pair of columns (features) to be considered as a valid correlation.
|[CORR_THRESHOLD] | The absolute values of pair-wise correlations are calculated. If two variables have a valid correlation higher than [CORR_THRESHOLD], we looks at the mean absolute correlation of each variable and removes the variable with the largest mean absolute correlation.

Steps to clean sensor features for individual participants. It only considers the phone sensors currently.

??? info “1. Fill NA with 0 for the selected event features.”
Some event features should be zero instead of NA. In this step, we fill those missing features with 0 when the phone_data_yield_rapids_ratiovalidyieldedminutes column is higher than the [IMPUTE_SELECTED_EVENT_FEATURES][MIN_DATA_YIELDED_MINUTES_TO_IMPUTE] parameter. Plugins such as Activity Recognition sensor are not considered. You can skip this step by setting [IMPUTE_SELECTED_EVENT_FEATURES][COMPUTE] to False.

Take phone calls sensor as an example. If there are no calls records during a time segment for a participant, then (1) the calls sensor was not working during that time segment; or (2) the calls sensor was working and the participant did not have any calls during that time segment. To differentiate these two situations, we assume the selected sensors are working when `phone_data_yield_rapids_ratiovalidyieldedminutes > [MIN_DATA_YIELDED_MINUTES_TO_IMPUTE]`.

The following phone event-based features are considered currently:

 - Application foreground: countevent, countepisode, minduration, maxduration, meanduration, sumduration.
 - Battery: all features.
 - Calls: count, distinctcontacts, sumduration, minduration, maxduration, meanduration, modeduration.
 - Keyboard: sessioncount, averagesessionlength, changeintextlengthlessthanminusone, changeintextlengthequaltominusone, changeintextlengthequaltoone, changeintextlengthmorethanone, maxtextlength, totalkeyboardtouches.
 - Messages: count, distinctcontacts.
 - Screen: sumduration, maxduration, minduration, avgduration, countepisode.
 - WiFi: all connected and visible features.

??? info “2. Discard unreliable rows.”
Extracted features might be not reliable if the sensor only works for a short period during a time segment. In this step, we discard rows when the phone_data_yield_rapids_ratiovalidyieldedminutes column or the phone_data_yield_rapids_ratiovalidyieldedhours column is less than the [DATA_YIELD_RATIO_THRESHOLD] parameter. We recommend using phone_data_yield_rapids_ratiovalidyieldedminutes column (set [DATA_YIELD_FEATURE] to RATIO_VALID_YIELDED_MINUTES) on time segments that are shorter than two or three hours and phone_data_yield_rapids_ratiovalidyieldedhours (set [DATA_YIELD_FEATURE] to RATIO_VALID_YIELDED_HOURS) for longer segments. We do not recommend you to skip this step, but you can do it by setting [DATA_YIELD_RATIO_THRESHOLD] to 0.

??? info “3. Discard columns (features) with too many missing values.”
In this step, we discard columns with missing value ratios higher than [COLS_NAN_THRESHOLD]. We do not recommend you to skip this step, but you can do it by setting [COLS_NAN_THRESHOLD] to 1.

??? info “4. Discard columns (features) with zero variance.”
In this step, we discard columns with zero variance. We do not recommend you to skip this step, but you can do it by setting [COLS_VAR_THRESHOLD] to False.

??? info “5. Drop highly correlated features.”
As highly correlated features might not bring additional information and will increase the complexity of a model, we drop them in this step. The absolute values of pair-wise correlations are calculated. Each correlation vector between two variables is regarded as valid only if the ratio of valid value pairs (i.e. non NA pairs) is greater than or equal to [DROP_HIGHLY_CORRELATED_FEATURES][MIN_OVERLAP_FOR_CORR_THRESHOLD]. If two variables have a correlation coefficient higher than [DROP_HIGHLY_CORRELATED_FEATURES][CORR_THRESHOLD], we look at the mean absolute correlation of each variable and remove the variable with the largest mean absolute correlation. This step can be skipped by setting [DROP_HIGHLY_CORRELATED_FEATURES][COMPUTE] to False.

??? info “6. Discard rows with too many missing values.”
In this step, we discard rows with missing value ratios higher than [ROWS_NAN_THRESHOLD]. We do not recommend you to skip this step, but you can do it by setting [ROWS_NAN_THRESHOLD] to 1. In other words, we are discarding time segments (e.g. days) that did not have enough data to be considered reliable. This step is similar to step 2 except the ratio is computed based on NA values instead of a phone data yield threshold.

Clean sensor features for all participants

!!! info “File Sequence”
bash - data/processed/features/all_participants/all_sensor_features.csv - data/processed/features/all_participants/all_sensor_features_cleaned_{provider_key}.csv

RAPIDS provider

Parameters description and the steps are the same as the above RAPIDS provider section for individual participants.

Minimal Working Example

This is a quick guide for creating and running a simple pipeline to extract missing, outgoing, and incoming call features for 24 hr (00:00:00 to 23:59:59) and night (00:00:00 to 05:59:59) time segments of every day of data of one participant that was monitored on the US East coast with an Android smartphone.

	Install RAPIDS and make sure your conda environment is active (see Installation)

	Download this CSV file and save it as data/external/aware_csv/calls.csv

	Make the changes listed below for the corresponding Configuration step (we provide an example of what the relevant sections in your config.yml will look like after you are done)

??? info “Required configuration changes (click to expand)”
1. Supported data streams.

 Based on the docs, we decided to use the `aware_csv` data stream because we are processing aware data saved in a CSV file. We will use this label in a later step; there's no need to type it or save it anywhere yet.

 3. **Create your [participants file](../../setup/configuration#participant-files).**

 Since we are processing data from a single participant, you only need to create a single participant file called `p01.yaml` in `data/external/participant_files`. This participant file only has a `PHONE` section because this hypothetical participant was only monitored with a smartphone. Note that for a real analysis, you can do this [automatically with a CSV file](../../setup/configuration##automatic-creation-of-participant-files)

 1. Add `p01` to `[PIDS]` in `config.yaml`

 1. Create a file in `data/external/participant_files/p01.yaml` with the following content:

         ```yaml
         PHONE:
             DEVICE_IDS: [a748ee1a-1d0b-4ae9-9074-279a2b6ba524] # the participant's AWARE device id
             PLATFORMS: [android] # or ios
             LABEL: MyTestP01 # any string
             START_DATE: 2020-01-01 # this can also be empty
             END_DATE: 2021-01-01 # this can also be empty
         ```

 4. **Select what [time segments](../../setup/configuration#time-segments) you want to extract features on.**

 1. Set `[TIME_SEGMENTS][FILE]` to `data/external/timesegments_periodic.csv`

 1. Create a file in `data/external/timesegments_periodic.csv` with the following content

         ```csv
         label,start_time,length,repeats_on,repeats_value
         daily,00:00:00,23H 59M 59S,every_day,0
         night,00:00:00,5H 59M 59S,every_day,0
         ```

 2. **Choose the [timezone of your study](../../setup/configuration#timezone-of-your-study).**

 We will use the default time zone settings since this example is processing data collected on the US East Coast (`America/New_York`)

     ```yaml
     TIMEZONE: 
         TYPE: SINGLE
         SINGLE:
             TZCODE: America/New_York
     ```

 5. **Modify your [device data stream configuration](../../setup/configuration#data-stream-configuration)**

 1. Set `[PHONE_DATA_STREAMS][USE]` to `aware_csv`.

 2. We will use the default value for `[PHONE_DATA_STREAMS][aware_csv][FOLDER]` since we already stored the test calls CSV file there.

 6. **Select what [sensors and features](../../setup/configuration#sensor-and-features-to-process) you want to process.**

 1. Set `[PHONE_CALLS][CONTAINER]` to `calls.csv` in the `config.yaml` file.

 1. Set `[PHONE_CALLS][PROVIDERS][RAPIDS][COMPUTE]` to `True` in the `config.yaml` file.

!!! example “Example of the config.yaml sections after the changes outlined above”

 This will be your `config.yaml` after following the instructions above. Click on the numbered markers to know more.

 ``` { .yaml .annotate } 
 PIDS: [p01] # (1)

 TIMEZONE:
     TYPE: SINGLE # (2)
     SINGLE:
         TZCODE: America/New_York

 # ... other irrelevant sections

 TIME_SEGMENTS: &time_segments
     TYPE: PERIODIC # (3)
     FILE: "data/external/timesegments_periodic.csv" # (4)
     INCLUDE_PAST_PERIODIC_SEGMENTS: FALSE

 PHONE_DATA_STREAMS:
     USE: aware_csv # (5)

     aware_csv:
         FOLDER: data/external/aware_csv # (6)

 # ... other irrelevant sections

 ############## PHONE ###########################################################
 ################################################################################

 # ... other irrelevant sections

 # Communication call features config, TYPES and FEATURES keys need to match
 PHONE_CALLS:
     CONTAINER: calls.csv  # (7) 
     PROVIDERS:
         RAPIDS:
             COMPUTE: True # (8)
             CALL_TYPES: ...
 ```

 1. We added `p01` to PIDS after creating the participant file:
     ```bash
     data/external/participant_files/p01.yaml
     ```

 With the following content:
     ```yaml
     PHONE:
         DEVICE_IDS: [a748ee1a-1d0b-4ae9-9074-279a2b6ba524] # the participant's AWARE device id
         PLATFORMS: [android] # or ios
         LABEL: MyTestP01 # any string
         START_DATE: 2020-01-01 # this can also be empty
         END_DATE: 2021-01-01 # this can also be empty
     ```

 2. We use the default `SINGLE` time zone.

 3. We use the default `PERIODIC` time segment `[TYPE]`

 4. We created this time segments file with these lines:

     ```csv
     label,start_time,length,repeats_on,repeats_value
     daily,00:00:00,23H 59M 59S,every_day,0
     night,001:00:00,5H 59M 59S,every_day,0
     ```

 5. We set `[USE]` to `aware_device` to tell RAPIDS to process sensor data collected with the AWARE Framework stored in CSV files.

 6. We used the default `[FOLDER]` for `awre_csv` since we already stored our test `calls.csv` file there

 7. We changed `[CONTAINER]` to `calls.csv` to process our test call data.

 8. We flipped `[COMPUTE]` to `True` to extract call behavioral features using the `RAPIDS` feature provider.

	Run RAPIDS

./rapids -j1

	The call features for daily and morning time segments will be in

data/processed/features/all_participants/all_sensor_features.csv

Add New Data Streams

A data stream is a set of sensor data collected using a specific type of device with a specific format and stored in a specific container. RAPIDS is agnostic to data streams’ formats and container; see the Data Streams Introduction for a list of supported streams.

A container is queried with an R or Python script that connects to the database, API or file where your stream’s raw data is stored.

A format is described using a format.yaml file that specifies how to map and mutate your stream’s raw data to match the data and format RAPIDS needs.

The most common cases when you would want to implement a new data stream are:

	You collected data with a mobile sensing app RAPIDS does not support yet. For example, Beiwe [https://www.beiwe.org/] data stored in MySQL. You will need to define a new format file and a new container script.

	You collected data with a mobile sensing app RAPIDS supports, but this data is stored in a container that RAPIDS can’t connect to yet. For example, AWARE data stored in PostgreSQL. In this case, you can reuse the format file of the aware_mysql stream, but you will need to implement a new container script.

!!! hint
Both the container.[R|py] and the format.yaml are stored in ./src/data/streams/[stream_name] where [stream_name] can be aware_mysql for example.

Implement a Container

The container script of a data stream can be implemented in R (strongly recommended) or python. This script must have two functions if you are implementing a stream for phone data or one function otherwise. The script can contain other auxiliary functions.

First of all, add any parameters your script might need in config.yaml under (device)_DATA_STREAMS. These parameters will be available in the stream_parameters argument of the one or two functions you implement. For example, if you are adding support for Beiwe data stored in PostgreSQL and your container needs a set of credentials to connect to a database, your new data stream configuration would be:

PHONE_DATA_STREAMS:
 USE: aware_python

 # AVAILABLE:
 aware_mysql:
 DATABASE_GROUP: MY_GROUP
 beiwe_postgresql:
 DATABASE_GROUP: MY_GROUP # users define this group (user, password, host, etc.) in credentials.yaml

Then implement one or both of the following functions:

=== “pull_data”

This function returns the data columns for a specific sensor and participant. It has the following parameters:

Param	Description
stream_parameters	Any parameters (keys/values) set by the user in any `[DEVICE_DATA_STREAMS][stream_name]` key of `config.yaml`. For example, `[DATABASE_GROUP]` inside `[FITBIT_DATA_STREAMS][fitbitjson_mysql]`
sensor_container	The value set by the user in any `[DEVICE_SENSOR][CONTAINER]` key of `config.yaml`. It can be a table, file path, or whatever data source you want to support that contains the **data from a single sensor for all participants**. For example, `[PHONE_ACCELEROMETER][CONTAINER]`
device	The device id that you need to get the data for (this is set by the user in the [participant files](../../setup/configuration/#participant-files)). For example, in AWARE this device id is a uuid
columns	A list of the columns that you need to get from `sensor_container`. You specify these columns in your stream's `format.yaml`

!!! example
 This is the `pull_data` function we implemented for `aware_mysql`. Note that we can `message`, `warn` or `stop` the user during execution.

    ```r
    pull_data <- function(stream_parameters, device, sensor_container, columns){
        # get_db_engine is an auxiliary function not shown here for brevity bu can be found in src/data/streams/aware_mysql/container.R
        dbEngine <- get_db_engine(stream_parameters$DATABASE_GROUP)
        query <- paste0("SELECT ", paste(columns, collapse = ",")," FROM ", sensor_container, " WHERE device_id = '", device,"'")
        # Letting the user know what we are doing
        message(paste0("Executing the following query to download data: ", query)) 
        sensor_data <- dbGetQuery(dbEngine, query)
        
        dbDisconnect(dbEngine)
        
        if(nrow(sensor_data) == 0)
            warning(paste("The device '", device,"' did not have data in ", sensor_container))

        return(sensor_data)
    }
    ```


=== “infer_device_os”

!!! warning
 This function is only necessary for phone data streams.

RAPIDS allows users to use the keyword `infer` (previously `multiple`) to [automatically infer](../../setup/configuration/#structure-of-participants-files) the mobile Operative System a phone was running.

If you have a way to infer the OS of a device id, implement this function. For example, for AWARE data we use the `aware_device` table.

If you don't have a way to infer the OS, call `stop("Error Message")` so other users know they can't use `infer` or the inference failed, and they have to assign the OS manually in the participant file.

This function returns the operative system (`android` or `ios`) for a specific phone device id. It has the following parameters:

Param	Description
stream_parameters	Any parameters (keys/values) set by the user in any `[DEVICE_DATA_STREAMS][stream_name]` key of `config.yaml`. For example, `[DATABASE_GROUP]` inside `[FITBIT_DATA_STREAMS][fitbitjson_mysql]`
device	The device id that you need to infer the OS for (this is set by the user in the [participant files](../../setup/configuration/#participant-files)). For example, in AWARE this device id is a uuid

!!! example
 This is the `infer_device_os` function we implemented for `aware_mysql`. Note that we can `message`, `warn` or `stop` the user during execution.

    ```r
    infer_device_os <- function(stream_parameters, device){
        # get_db_engine is an auxiliary function not shown here for brevity bu can be found in src/data/streams/aware_mysql/container.R
        group <- stream_parameters$DATABASE_GROUP
        
        dbEngine <- dbConnect(MariaDB(), default.file = "./.env", group = group)
        query <- paste0("SELECT device_id,brand FROM aware_device WHERE device_id = '", device, "'")
        message(paste0("Executing the following query to infer phone OS: ", query)) 
        os <- dbGetQuery(dbEngine, query)
        dbDisconnect(dbEngine)
        
        if(nrow(os) > 0)
            return(os %>% mutate(os = ifelse(brand == "iPhone", "ios", "android")) %>% pull(os))
        else
            stop(paste("We cannot infer the OS of the following device id because it does not exist in the aware_device table:", device))
        
        return(os)
    }
    ```


Implement a Format

A format file format.yaml describes the mapping between your stream’s raw data and the data that RAPIDS needs. This file has a section per sensor (e.g. PHONE_ACCELEROMETER), and each section has two attributes (keys):

	RAPIDS_COLUMN_MAPPINGS are mappings between the columns RAPIDS needs and the columns your raw data already has.

	The reserved keyword FLAG_TO_MUTATE flags columns that RAPIDS requires but that are not initially present in your container (database, CSV file). These columns have to be created by your mutation scripts.

	MUTATION. Sometimes your raw data needs to be transformed to match the format RAPIDS can handle (including creating columns marked as FLAG_TO_MUTATE)

	COLUMN_MAPPINGS are mappings between the columns a mutation SCRIPT needs and the columns your raw data has.

	SCRIPTS are a collection of R or Python scripts that transform one or more raw data columns into the format RAPIDS needs.

!!! hint
[RAPIDS_COLUMN_MAPPINGS] and [MUTATE][COLUMN_MAPPINGS] have a key (left-hand side string) and a value (right-hand side string). The values are the names used to pulled columns from a container (e.g., columns in a database table). All values are renamed to their keys in lower case. The renamed columns are sent to every mutation script within the data argument, and the final output is the input RAPIDS process further.

For example, let's assume we are implementing `beiwe_mysql` and defining the following format for `PHONE_FAKESENSOR`:

```yaml
PHONE_FAKESENSOR:
    ANDROID:
        RAPIDS_COLUMN_MAPPINGS:
            TIMESTAMP: beiwe_timestamp
            DEVICE_ID: beiwe_deviceID
            MAGNITUDE_SQUARED: FLAG_TO_MUTATE
        MUTATE:
            COLUMN_MAPPINGS:
                MAGNITUDE: beiwe_value
            SCRIPTS:
              - src/data/streams/mutations/phone/square_magnitude.py
```

RAPIDS will:

1. Download `beiwe_timestamp`, `beiwe_deviceID`, and `beiwe_value` from the container of `beiwe_mysql` (MySQL DB)
2. Rename these columns to `timestamp`, `device_id`, and `magnitude`, respectively.
3. Execute `square_magnitude.py` with a data frame as an argument containing the renamed columns. This script will square `magnitude` and rename it to `magnitude_squared`
4. Verify the data frame returned by `square_magnitude.py` has the columns RAPIDS needs `timestamp`, `device_id`, and `magnitude_squared`.
5. Use this data frame as the input to be processed in the pipeline.

Note that although `RAPIDS_COLUMN_MAPPINGS` and `[MUTATE][COLUMN_MAPPINGS]` keys are in capital letters for readability (e.g. `MAGNITUDE_SQUARED`), the names of the final columns you mutate in your scripts should be lower case.

Let’s explain in more depth this column mapping with examples.

Name mapping

The mapping for some sensors is straightforward. For example, accelerometer data most of the time has a timestamp, three axes (x,y,z), and a device id that produced it. AWARE and a different sensing app like Beiwe likely logged accelerometer data in the same way but with different column names. In this case, we only need to match Beiwe data columns to RAPIDS columns one-to-one:

PHONE_ACCELEROMETER:
 ANDROID:
 RAPIDS_COLUMN_MAPPINGS:
 TIMESTAMP: beiwe_timestamp
 DEVICE_ID: beiwe_deviceID
 DOUBLE_VALUES_0: beiwe_x
 DOUBLE_VALUES_1: beiwe_y
 DOUBLE_VALUES_2: beiwe_z
 MUTATE:
 COLUMN_MAPPINGS:
 SCRIPTS: # it's ok if this is empty

Value mapping

For some sensors, we need to map column names and values. For example, screen data has ON and OFF events; let’s suppose Beiwe represents an ON event with the number 1, but RAPIDS identifies ON events with the number 2. In this case, we need to mutate the raw data coming from Beiwe and replace all 1s with 2s.

We do this by listing one or more R or Python scripts in MUTATION_SCRIPTS that will be executed in order. We usually store all mutation scripts under src/data/streams/mutations/[device]/[platform]/ and they can be reused across data streams.

PHONE_SCREEN:
 ANDROID:
 RAPIDS_COLUMN_MAPPINGS:
 TIMESTAMP: beiwe_timestamp
 DEVICE_ID: beiwe_deviceID
 EVENT: beiwe_event
 MUTATE:
 COLUMN_MAPPINGS:
 SCRIPTS:
 - src/data/streams/mutations/phone/beiwe/beiwe_screen_map.py

!!! hint
- A MUTATION_SCRIPT can also be used to clean/preprocess your data before extracting behavioral features.
- A mutation script has to have a main function that receives two arguments, data and stream_parameters.
- The stream_parameters argument contains the config.yaml key/values of your data stream (this is the same argument that your container.[py|R] script receives, see Implement a Container).

=== "python"
 Example of a python mutation script
    ```python
    import pandas as pd

    def main(data, stream_parameters):
        # mutate data
        return(data)
    ```
=== "R"
 Example of a R mutation script
    ```r
    source("renv/activate.R") # needed to use RAPIDS renv environment
    library(dplyr)

    main <- function(data, stream_parameters){
        # mutate data
        return(data)
    }
    ```


Complex mapping

Sometimes, your raw data doesn’t even have the same columns RAPIDS expects for a sensor. For example, let’s pretend Beiwe stores PHONE_ACCELEROMETER axis data in a single column called acc_col instead of three. You have to create a MUTATION_SCRIPT to split acc_col into three columns x, y, and z.

For this, you mark the three axes columns RAPIDS needs in [RAPIDS_COLUMN_MAPPINGS] with the word FLAG_TO_MUTATE, map acc_col in [MUTATION][COLUMN_MAPPINGS], and list a Python script under [MUTATION][SCRIPTS] with the code to split acc_col. See an example below.

RAPIDS expects that every column mapped as FLAG_TO_MUTATE will be generated by your mutation script, so it won’t try to retrieve them from your container (database, CSV file, etc.).

In our example, acc_col will be fetched from the stream’s container and renamed to JOINED_AXES because beiwe_split_acc.py will split it into double_values_0, double_values_1, and double_values_2.

PHONE_ACCELEROMETER:
 ANDROID:
 RAPIDS_COLUMN_MAPPINGS:
 TIMESTAMP: beiwe_timestamp
 DEVICE_ID: beiwe_deviceID
 DOUBLE_VALUES_0: FLAG_TO_MUTATE
 DOUBLE_VALUES_1: FLAG_TO_MUTATE
 DOUBLE_VALUES_2: FLAG_TO_MUTATE
 MUTATE:
 COLUMN_MAPPINGS:
 JOINED_AXES: acc_col
 SCRIPTS:
 - src/data/streams/mutations/phone/beiwe/beiwe_split_acc.py

This is a draft of beiwe_split_acc.py MUTATION_SCRIPT:

import pandas as pd

def main(data, stream_parameters):
 # data has the acc_col
 # split acc_col into three columns: double_values_0, double_values_1, double_values_2 to match RAPIDS format
 # remove acc_col since we don't need it anymore
 return(data)

OS complex mapping

There is a special case for a complex mapping scenario for smartphone data streams. The Android and iOS sensor APIs return data in different formats for certain sensors (like screen, activity recognition, battery, among others).

In case you didn’t notice, the examples we have used so far are grouped under an ANDROID key, which means they will be applied to data collected by Android phones. Additionally, each sensor has an IOS key for a similar purpose. We use the complex mapping described above to transform iOS data into an Android format (it’s always iOS to Android and any new phone data stream must do the same).

For example, this is the format.yaml key for PHONE_ACTVITY_RECOGNITION. Note that the ANDROID mapping is simple (one-to-one) but the IOS mapping is complex with three FLAG_TO_MUTATE columns, two [MUTATE][COLUMN_MAPPINGS] mappings, and one [MUTATION][SCRIPT].

PHONE_ACTIVITY_RECOGNITION:
 ANDROID:
 RAPIDS_COLUMN_MAPPINGS:
 TIMESTAMP: timestamp
 DEVICE_ID: device_id
 ACTIVITY_TYPE: activity_type
 ACTIVITY_NAME: activity_name
 CONFIDENCE: confidence
 MUTATION:
 COLUMN_MAPPINGS:
 SCRIPTS:
 IOS:
 RAPIDS_COLUMN_MAPPINGS:
 TIMESTAMP: timestamp
 DEVICE_ID: device_id
 ACTIVITY_TYPE: FLAG_TO_MUTATE
 ACTIVITY_NAME: FLAG_TO_MUTATE
 CONFIDENCE: FLAG_TO_MUTATE
 MUTATION:
 COLUMN_MAPPINGS:
 ACTIVITIES: activities
 CONFIDENCE: confidence
 SCRIPTS:
 - "src/data/streams/mutations/phone/aware/activity_recogniton_ios_unification.R"

??? “Example activity_recogniton_ios_unification.R”
In this MUTATION_SCRIPT we create ACTIVITY_NAME and ACTIVITY_TYPE based on activities, and map confidence iOS values to Android values.
```R
source(”renv/activate.R”)
library(”dplyr”, warn.conflicts = F)
library(stringr)

clean_ios_activity_column <- function(ios_gar){
    ios_gar <- ios_gar %>%
        mutate(activities = str_replace_all(activities, pattern = '("|\\[|\\])', replacement = ""))

    existent_multiple_activities <- ios_gar %>%
        filter(str_detect(activities, ",")) %>% 
        group_by(activities) %>%
        summarise(mutiple_activities = unique(activities), .groups = "drop_last") %>% 
        pull(mutiple_activities)

    known_multiple_activities <- c("stationary,automotive")
    unkown_multiple_actvities <- setdiff(existent_multiple_activities, known_multiple_activities)
    if(length(unkown_multiple_actvities) > 0){
        stop(paste0("There are unkwown combinations of ios activities, you need to implement the decision of the ones to keep: ", unkown_multiple_actvities))
    }

    ios_gar <- ios_gar %>%
        mutate(activities = str_replace_all(activities, pattern = "stationary,automotive", replacement = "automotive"))
    
    return(ios_gar)
}

unify_ios_activity_recognition <- function(ios_gar){
    # We only need to unify Google Activity Recognition data for iOS
    # discard rows where activities column is blank
    ios_gar <- ios_gar[-which(ios_gar$activities == ""), ]
    # clean "activities" column of ios_gar
    ios_gar <- clean_ios_activity_column(ios_gar)

    # make it compatible with android version: generate "activity_name" and "activity_type" columns
    ios_gar  <-  ios_gar %>% 
        mutate(activity_name = case_when(activities == "automotive" ~ "in_vehicle",
                                        activities == "cycling" ~ "on_bicycle",
                                        activities == "walking" ~ "walking",
                                        activities == "running" ~ "running",
                                        activities == "stationary" ~ "still"),
                activity_type = case_when(activities == "automotive" ~ 0,
                                        activities == "cycling" ~ 1,
                                        activities == "walking" ~ 7,
                                        activities == "running" ~ 8,
                                        activities == "stationary" ~ 3,
                                        activities == "unknown" ~ 4),
                confidence = case_when(confidence == 0 ~ 0,
                                      confidence == 1 ~ 50,
                                      confidence == 2 ~ 100)
                                    ) %>% 
        select(-activities)
    
    return(ios_gar)
}

main <- function(data, stream_parameters){
    return(unify_ios_activity_recognition(data, stream_parameters))
}
```


aware_csv

This data stream handles iOS and Android sensor data collected with the AWARE Framework [https://awareframework.com/] and stored in CSV files.

!!! warning
The CSV files have to use , as separator, \ as escape character (do not escape " with ""), and wrap any string columns with ".

See examples in the CSV files inside [rapids_example_csv.zip](https://osf.io/wbg23/)

??? example "Example of a valid CSV file"
    ```csv
    "_id","timestamp","device_id","activities","confidence","stationary","walking","running","automotive","cycling","unknown","label"
    1,1587528000000,"13dbc8a3-dae3-4834-823a-4bc96a7d459d","[\"stationary\"]",2,1,0,0,0,0,0,""
    2,1587528060000,"13dbc8a3-dae3-4834-823a-4bc96a7d459d","[\"stationary\"]",2,1,0,0,0,0,0,"supplement"
    3,1587528120000,"13dbc8a3-dae3-4834-823a-4bc96a7d459d","[\"stationary\"]",2,1,0,0,0,0,0,"supplement"
    4,1587528180000,"13dbc8a3-dae3-4834-823a-4bc96a7d459d","[\"stationary\"]",2,1,0,0,0,0,0,"supplement"
    5,1587528240000,"13dbc8a3-dae3-4834-823a-4bc96a7d459d","[\"stationary\"]",2,1,0,0,0,0,0,"supplement"
    6,1587528300000,"13dbc8a3-dae3-4834-823a-4bc96a7d459d","[\"stationary\"]",2,1,0,0,0,0,0,"supplement"
    7,1587528360000,"13dbc8a3-dae3-4834-823a-4bc96a7d459d","[\"stationary\"]",2,1,0,0,0,0,0,"supplement"
    ```


Container

A CSV file per sensor, each containing the data for all participants.

The script to connect and download data from this container is at:

src/data/streams/aware_csv/container.R

Format

–8<—- “docs/snippets/aware_format.md”

aware_influxdb (beta)

!!! warning
This data stream is being released in beta while we test it thoroughly.

This data stream handles iOS and Android sensor data collected with the AWARE Framework [https://awareframework.com/] and stored in an InfluxDB database.

Container

An InfluxDB database with a table per sensor, each containing the data for all participants.

The script to connect and download data from this container is at:

src/data/streams/aware_influxdb/container.R

Format

–8<—- “docs/snippets/aware_format.md”

aware_micro_mysql

This data stream handles iOS and Android sensor data collected with the AWARE Framework’s [https://awareframework.com/] AWARE Micro [https://github.com/denzilferreira/aware-micro] server and stored in a MySQL database.

Container

A MySQL database with a table per sensor, each containing the data for all participants. Sensor data is stored in a JSON field within each table called data

The script to connect and download data from this container is at:

src/data/streams/aware_micro_mysql/container.R

Format

–8<—- “docs/snippets/aware_format.md”

aware_mysql

This data stream handles iOS and Android sensor data collected with the AWARE Framework [https://awareframework.com/] and stored in a MySQL database.

Container

A MySQL database with a table per sensor, each containing the data for all participants. This is the default database created by the old PHP AWARE server (as opposed to the new JavaScript Micro server).

The script to connect and download data from this container is at:

src/data/streams/aware_mysql/container.R

Format

–8<—- “docs/snippets/aware_format.md”

Data Streams Introduction

A data stream is a set of sensor data collected using a specific type of device with a specific format and stored in a specific container.

For example, the aware_mysql data stream handles smartphone data (device) collected with the AWARE Framework [https://awareframework.com/] (format) stored in a MySQL database (container). Similarly, smartphone data collected with Beiwe [https://www.beiwe.org/] will have a different format and could be stored in a container like a PostgreSQL database or a CSV file.

If you want to process a data stream using RAPIDS, make sure that your data is stored in a supported format and container (see table below).

If RAPIDS doesn’t support your data stream yet (e.g. Beiwe data stored in PostgreSQL, or AWARE data stored in SQLite), you can always implement a new data stream. If it’s something you think other people might be interested on, we will be happy to include your new data stream in RAPIDS, so get in touch!.

!!! hint
Currently, you can add new data streams for smartphones, Fitbit, and Empatica devices. If you need RAPIDS to process data from other devices, like Oura Rings or Actigraph wearables, get in touch. It is a more complicated process that could take a couple of days to implement for someone familiar with R or Python, but we would be happy to work on it together.

For reference, these are the data streams we currently support:

| Data Stream | Device | Format | Container | Docs
|–|–|–|–|–|
| aware_mysql| Phone | AWARE app | MySQL | link
| aware_micro_mysql| Phone | AWARE Micro server | MySQL | link
| aware_csv| Phone | AWARE app | CSV files | link
| aware_influxdb (beta)| Phone | AWARE app | InfluxDB | link
| fitbitjson_mysql| Fitbit | JSON (per Fitbit’s API [https://dev.fitbit.com/build/reference/web-api/]) | MySQL | link
| fitbitjson_csv| Fitbit | JSON (per Fitbit’s API [https://dev.fitbit.com/build/reference/web-api/]) | CSV files | link
| fitbitparsed_mysql| Fitbit | Parsed (parsed API data) | MySQL | link
| fitbitparsed_csv| Fitbit | Parsed (parsed API data) | CSV files | link
| empatica_zip| Empatica | E4 Connect [https://support.empatica.com/hc/en-us/articles/201608896-Data-export-and-formatting-from-E4-connect-] | ZIP files | link

empatica_zip

This data stream handles Empatica sensor data downloaded as zip files using the E4 Connect [https://support.empatica.com/hc/en-us/articles/201608896-Data-export-and-formatting-from-E4-connect-].

Container

You need to create a subfolder for every participant named after their device id inside the folder specified by [EMPATICA_DATA_STREAMS][empatica_zipfiles][FOLDER]. You can add one or more Empatica zip files to any subfolder.

The script to connect and download data from this container is at:

src/data/streams/empatica_zip/container.R

Format

The format.yaml maps and transforms columns in your raw data stream to the mandatory columns RAPIDS needs for Empatica sensors. This file is at:

src/data/streams/empatica_zip/format.yaml

All columns are mutated from the raw data in the zip files so you don’t need to modify any column mappings.

??? info “EMPATICA_ACCELEROMETER”

RAPIDS_COLUMN_MAPPINGS

RAPIDS column	Stream column
TIMESTAMP	timestamp
DEVICE_ID	device_id
DOUBLE_VALUES_0	double_values_0
DOUBLE_VALUES_1	double_values_1
DOUBLE_VALUES_2	double_values_2

MUTATION

- **COLUMN_MAPPINGS** (None)
- **SCRIPTS** (None)

??? info “EMPATICA_HEARTRATE”

RAPIDS_COLUMN_MAPPINGS

RAPIDS column	Stream column
TIMESTAMP	timestamp
DEVICE_ID	device_id
HEARTRATE	heartrate

MUTATION

- **COLUMN_MAPPINGS** (None)
- **SCRIPTS** (None)

??? info “EMPATICA_TEMPERATURE”

RAPIDS_COLUMN_MAPPINGS

RAPIDS column	Stream column
TIMESTAMP	timestamp
DEVICE_ID	device_id
TEMPERATURE	temperature

MUTATION

- **COLUMN_MAPPINGS** (None)
- **SCRIPTS** (None)

??? info “EMPATICA_ELECTRODERMAL_ACTIVITY”

RAPIDS_COLUMN_MAPPINGS

RAPIDS column	Stream column
TIMESTAMP	timestamp
DEVICE_ID	device_id
ELECTRODERMAL_ACTIVITY	electrodermal_activity

MUTATION

- **COLUMN_MAPPINGS** (None)
- **SCRIPTS** (None)

??? info “EMPATICA_BLOOD_VOLUME_PULSE”

RAPIDS_COLUMN_MAPPINGS

RAPIDS column	Stream column
TIMESTAMP	timestamp
DEVICE_ID	device_id
BLOOD_VOLUME_PULSE	blood_volume_pulse

MUTATION

- **COLUMN_MAPPINGS** (None)
- **SCRIPTS** (None)

??? info “EMPATICA_INTER_BEAT_INTERVAL”

RAPIDS_COLUMN_MAPPINGS

RAPIDS column	Stream column
TIMESTAMP	timestamp
DEVICE_ID	device_id
INTER_BEAT_INTERVAL	inter_beat_interval

MUTATION

- **COLUMN_MAPPINGS** (None)
- **SCRIPTS** (None)

??? info “EMPATICA_EMPATICA_TAGS”

RAPIDS_COLUMN_MAPPINGS

RAPIDS column	Stream column
TIMESTAMP	timestamp
DEVICE_ID	device_id
TAGS	tags

MUTATION

- **COLUMN_MAPPINGS** (None)
- **SCRIPTS** (None)

fitbitjson_csv

This data stream handles Fitbit sensor data downloaded using the Fitbit Web API [https://dev.fitbit.com/build/reference/web-api/] and stored in a CSV file. Please note that RAPIDS cannot query the API directly; you need to use other available tools or implement your own. Once you have your sensor data in a CSV file, RAPIDS can process it.

!!! warning
The CSV files have to use , as separator, \ as escape character (do not escape " with ""), and wrap any string columns with ".

??? example "Example of a valid CSV file"
    ```csv
    "timestamp","device_id","label","fitbit_id","fitbit_data_type","fitbit_data"
    1587614400000,"a748ee1a-1d0b-4ae9-9074-279a2b6ba524","5S","5ZKN9B","steps","{\"activities-steps\":[{\"dateTime\":\"2020-04-23\",\"value\":\"7881\"}]"
    ```


Container

The container should be a CSV file per Fitbit sensor, each containing all participants’ data.

The script to connect and download data from this container is at:

src/data/streams/fitbitjson_csv/container.R

Format

–8<—- “docs/snippets/jsonfitbit_format.md”

fitbitjson_mysql

This data stream handles Fitbit sensor data downloaded using the Fitbit Web API [https://dev.fitbit.com/build/reference/web-api/] and stored in a MySQL database. Please note that RAPIDS cannot query the API directly; you need to use other available tools or implement your own. Once you have your sensor data in a MySQL database, RAPIDS can process it.

Container

The container should be a MySQL database with a table per sensor, each containing all participants’ data.

The script to connect and download data from this container is at:

src/data/streams/fitbitjson_mysql/container.R

Format

–8<—- “docs/snippets/jsonfitbit_format.md”

fitbitparsed_csv

This data stream handles Fitbit sensor data downloaded using the Fitbit Web API [https://dev.fitbit.com/build/reference/web-api/], parsed, and stored in a CSV file. Please note that RAPIDS cannot query the API directly; you need to use other available tools or implement your own. Once you have your parsed sensor data in a CSV file, RAPIDS can process it.

!!! info “What is the difference between JSON and plain data streams”
Most people will only need fitbitjson_* because they downloaded and stored their data directly from Fitbit’s API. However, if, for some reason, you don’t have access to that JSON data and instead only have the parsed data (columns and rows), you can use this data stream.

!!! warning
The CSV files have to use , as separator, \ as escape character (do not escape " with ""), and wrap any string columns with ".

??? example "Example of a valid CSV file"
    ```csv
    "device_id","heartrate","heartrate_zone","local_date_time","timestamp"
    "a748ee1a-1d0b-4ae9-9074-279a2b6ba524",69,"outofrange","2020-04-23 00:00:00",0
    "a748ee1a-1d0b-4ae9-9074-279a2b6ba524",69,"outofrange","2020-04-23 00:01:00",0
    "a748ee1a-1d0b-4ae9-9074-279a2b6ba524",67,"outofrange","2020-04-23 00:02:00",0
    "a748ee1a-1d0b-4ae9-9074-279a2b6ba524",69,"outofrange","2020-04-23 00:03:00",0
    ```


Container

The container should be a CSV file per sensor, each containing all participants’ data.

The script to connect and download data from this container is at:

src/data/streams/fitbitparsed_csv/container.R

Format

–8<—- “docs/snippets/parsedfitbit_format.md”

fitbitparsed_mysql

This data stream handles Fitbit sensor data downloaded using the Fitbit Web API [https://dev.fitbit.com/build/reference/web-api/], parsed, and stored in a MySQL database. Please note that RAPIDS cannot query the API directly; you need to use other available tools or implement your own. Once you have your parsed sensor data in a MySQL database, RAPIDS can process it.

!!! info “What is the difference between JSON and plain data streams”
Most people will only need fitbitjson_* because they downloaded and stored their data directly from Fitbit’s API. However, if, for some reason, you don’t have access to that JSON data and instead only have the parsed data (columns and rows), you can use this data stream.

Container

The container should be a MySQL database with a table per sensor, each containing all participants’ data.

The script to connect and download data from this container is at:

src/data/streams/fitbitparsed_mysql/container.R

Format

–8<—- “docs/snippets/parsedfitbit_format.md”

Mandatory Empatica Format

This is a description of the format RAPIDS needs to process data for the following Empatica sensors.

??? info “EMPATICA_ACCELEROMETER”

RAPIDS column	Description
TIMESTAMP	An UNIX timestamp (13 digits) when a row of data was logged
DEVICE_ID	A string that uniquely identifies a device
DOUBLE_VALUES_0	x axis of acceleration
DOUBLE_VALUES_1	y axis of acceleration
DOUBLE_VALUES_2	z axis of acceleration

??? info “EMPATICA_HEARTRATE”

RAPIDS column	Description
TIMESTAMP	An UNIX timestamp (13 digits) when a row of data was logged (automatically created by RAPIDS)
DEVICE_ID	A string that uniquely identifies a device
HEARTRATE	Intraday heartrate

??? info “EMPATICA_TEMPERATURE”

RAPIDS column	Description
TIMESTAMP	An UNIX timestamp (13 digits) when a row of data was logged (automatically created by RAPIDS)
DEVICE_ID	A string that uniquely identifies a device
TEMPERATURE	temperature

??? info “EMPATICA_ELECTRODERMAL_ACTIVITY”

RAPIDS column	Description
TIMESTAMP	An UNIX timestamp (13 digits) when a row of data was logged (automatically created by RAPIDS)
DEVICE_ID	A string that uniquely identifies a device
ELECTRODERMAL_ACTIVITY	electrical conductance

??? info “EMPATICA_BLOOD_VOLUME_PULSE”

RAPIDS column	Description
TIMESTAMP	An UNIX timestamp (13 digits) when a row of data was logged (automatically created by RAPIDS)
DEVICE_ID	A string that uniquely identifies a device
BLOOD_VOLUME_PULSE	blood volume pulse

??? info “EMPATICA_INTER_BEAT_INTERVAL”

RAPIDS column	Description
TIMESTAMP	An UNIX timestamp (13 digits) when a row of data was logged (automatically created by RAPIDS)
DEVICE_ID	A string that uniquely identifies a device
INTER_BEAT_INTERVAL	inter beat interval

??? info “EMPATICA_TAGS”

RAPIDS column	Description
TIMESTAMP	An UNIX timestamp (13 digits) when a row of data was logged (automatically created by RAPIDS)
DEVICE_ID	A string that uniquely identifies a device
TAGS	tags

Mandatory Fitbit Format

This is a description of the format RAPIDS needs to process data for the following Fitbit\ sensors.

??? info “FITBIT_HEARTRATE_SUMMARY”

RAPIDS column	Description
TIMESTAMP	An UNIX timestamp (13 digits) when a row of data was logged (automatically created by RAPIDS)
LOCAL_DATE_TIME	Date time string with format `yyyy-mm-dd hh:mm:ss`
DEVICE_ID	A string that uniquely identifies a device
HEARTRATE_DAILY_RESTINGHR	Daily resting heartrate
HEARTRATE_DAILY_CALORIESOUTOFRANGE	Calories spent while heartrate was oustide a heartrate [zone](https://help.fitbit.com/articles/en_US/Help_article/1565.htm#)
HEARTRATE_DAILY_CALORIESFATBURN	Calories spent while heartrate was inside the fat burn [zone](https://help.fitbit.com/articles/en_US/Help_article/1565.htm#)
HEARTRATE_DAILY_CALORIESCARDIO	Calories spent while heartrate was inside the cardio [zone](https://help.fitbit.com/articles/en_US/Help_article/1565.htm#)
HEARTRATE_DAILY_CALORIESPEAK	Calories spent while heartrate was inside the peak [zone](https://help.fitbit.com/articles/en_US/Help_article/1565.htm#)

??? info “FITBIT_HEARTRATE_INTRADAY”

RAPIDS column	Description
TIMESTAMP	An UNIX timestamp (13 digits) when a row of data was logged (automatically created by RAPIDS)
LOCAL_DATE_TIME	Date time string with format `yyyy-mm-dd hh:mm:ss`
DEVICE_ID	A string that uniquely identifies a device
HEARTRATE	Intraday heartrate
HEARTRATE_ZONE	Heartrate [zone](https://help.fitbit.com/articles/en_US/Help_article/1565.htm#) that HEARTRATE belongs to. It is based on the heartrate zone ranges of each device

??? info “FITBIT_SLEEP_SUMMARY”

RAPIDS column	Description
TIMESTAMP	An UNIX timestamp (13 digits) when a row of data was logged (automatically created by RAPIDS)
LOCAL_DATE_TIME	Date time string with format `yyyy-mm-dd 00:00:00`, the date is the same as the start date of a daily sleep episode if its time is after SLEEP_SUMMARY_LAST_NIGHT_END, otherwise it is the day before the start date of that sleep episode
LOCAL_START_DATE_TIME	Date time string with format `yyyy-mm-dd hh:mm:ss` representing the start of a daily sleep episode
LOCAL_END_DATE_TIME	Date time string with format `yyyy-mm-dd hh:mm:ss` representing the end of a daily sleep episode
DEVICE_ID	A string that uniquely identifies a device
EFFICIENCY	Sleep efficiency computed by fitbit as time asleep / (total time in bed - time to fall asleep)
MINUTES_AFTER_WAKEUP	Minutes the participant spent in bed after waking up
MINUTES_ASLEEP	Minutes the participant was asleep
MINUTES_AWAKE	Minutes the participant was awake
MINUTES_TO_FALL_ASLEEP	Minutes the participant spent in bed before falling asleep
MINUTES_IN_BED	Minutes the participant spent in bed across the sleep episode
IS_MAIN_SLEEP	0 if this episode is a nap, or 1 if it is a main sleep episode
TYPE	stages or classic [sleep data](https://dev.fitbit.com/build/reference/web-api/sleep/)

??? info “FITBIT_SLEEP_INTRADAY”

RAPIDS column	Description
TIMESTAMP	An UNIX timestamp (13 digits) when a row of data was logged (automatically created by RAPIDS)
LOCAL_DATE_TIME	Date time string with format `yyyy-mm-dd hh:mm:ss`, this either is a copy of LOCAL_START_DATE_TIME or LOCAL_END_DATE_TIME depending on which column is used to assign an episode to a specific day
DEVICE_ID	A string that uniquely identifies a device
TYPE_EPISODE_ID	An id for each unique main or nap episode. Main and nap episodes have different levels, each row in this table is one of such levels, so multiple rows can have the same TYPE_EPISODE_ID
DURATION	Duration of the episode level in minutes
IS_MAIN_SLEEP	0 if this episode level belongs to a nap, or 1 if it belongs to a main sleep episode
TYPE	type of level: stages or classic [sleep data](https://dev.fitbit.com/build/reference/web-api/sleep/)
LEVEL	For stages levels one of `wake`, `deep`, `light`, or `rem`. For classic levels one of `awake`, `restless`, and `asleep`

??? info “FITBIT_STEPS_SUMMARY”

RAPIDS column	Description
TIMESTAMP	An UNIX timestamp (13 digits) when a row of data was logged (automatically created by RAPIDS)
LOCAL_DATE_TIME	Date time string with format `yyyy-mm-dd hh:mm:ss`
DEVICE_ID	A string that uniquely identifies a device
STEPS	Daily step count

??? info “FITBIT_STEPS_INTRADAY”

RAPIDS column	Description
TIMESTAMP	An UNIX timestamp (13 digits) when a row of data was logged (automatically created by RAPIDS)
LOCAL_DATE_TIME	Date time string with format `yyyy-mm-dd hh:mm:ss`
DEVICE_ID	A string that uniquely identifies a device
STEPS	Intraday step count (usually every minute)

Mandatory Phone Format

This is a description of the format RAPIDS needs to process data for the following PHONE sensors.

See examples in the CSV files inside rapids_example_csv.zip [https://osf.io/wbg23/]

??? info “PHONE_ACCELEROMETER”

RAPIDS column	Description
TIMESTAMP	An UNIX timestamp (13 digits) when a row of data was logged
DEVICE_ID	A string that uniquely identifies a device
DOUBLE_VALUES_0	x axis of acceleration
DOUBLE_VALUES_1	y axis of acceleration
DOUBLE_VALUES_2	z axis of acceleration

??? info “PHONE_ACTIVITY_RECOGNITION”

RAPIDS column	Description
TIMESTAMP	An UNIX timestamp (13 digits) when a row of data was logged
DEVICE_ID	A string that uniquely identifies a device
ACTIVITY_NAME	An string that denotes current activity name: `in_vehicle`, `on_bicycle`, `on_foot`, `still`, `unknown`, `tilting`, `walking` or `running`
ACTIVITY_TYPE	An integer (ranged from 0 to 8) that denotes current activity type
CONFIDENCE	An integer (ranged from 0 to 100) that denotes the prediction accuracy

??? info “PHONE_APPLICATIONS_CRASHES”

RAPIDS column	Description
TIMESTAMP	An UNIX timestamp (13 digits) when a row of data was logged
DEVICE_ID	A string that uniquely identifies a device
PACKAGE_NAME	Application’s package name
APPLICATION_NAME	Application’s localized name
APPLICATION_VERSION	Application’s version code
ERROR_SHORT	Short description of the error
ERROR_LONG	More verbose version of the error description
ERROR_CONDITION	1 = code error; 2 = non-responsive (ANR error)
IS_SYSTEM_APP	Device’s pre-installed application

??? info “PHONE_APPLICATIONS_FOREGROUND”

RAPIDS column	Description
TIMESTAMP	An UNIX timestamp (13 digits) when a row of data was logged
DEVICE_ID	A string that uniquely identifies a device
PACKAGE_NAME	Application’s package name
APPLICATION_NAME	Application’s localized name
IS_SYSTEM_APP	Device’s pre-installed application

??? info “PHONE_APPLICATIONS_NOTIFICATIONS”

RAPIDS column	Description
TIMESTAMP	An UNIX timestamp (13 digits) when a row of data was logged
DEVICE_ID	A string that uniquely identifies a device
PACKAGE_NAME	Application’s package name
APPLICATION_NAME	Application’s localized name
TEXT	Notification’s header text, not the content
SOUND	Notification’s sound source (if applicable)
VIBRATE	Notification’s vibration pattern (if applicable)
DEFAULTS	If notification was delivered according to device’s default settings
FLAGS	An integer that denotes [Android notification flag](https://developer.android.com/reference/android/app/Notification.html)

??? info “PHONE_BATTERY”

RAPIDS column	Description
TIMESTAMP	An UNIX timestamp (13 digits) when a row of data was logged
DEVICE_ID	A string that uniquely identifies a device
BATTERY_STATUS	An integer that denotes battery status: 0 or 1 = unknown, 2 = charging, 3 = discharging, 4 = not charging, 5 = full
BATTERY_LEVEL	An integer that denotes battery level, between 0 and `BATTERY_SCALE`
BATTERY_SCALE	An integer that denotes the maximum battery level

??? info “PHONE_BLUETOOTH”

RAPIDS column	Description
TIMESTAMP	An UNIX timestamp (13 digits) when a row of data was logged
DEVICE_ID	A string that uniquely identifies a device
BT_ADDRESS	MAC address of the device’s Bluetooth sensor
BT_NAME	User assigned name of the device’s Bluetooth sensor
BT_RSSI	The RSSI dB to the scanned device

??? info “PHONE_CALLS”

RAPIDS column	Description
TIMESTAMP	An UNIX timestamp (13 digits) when a row of data was logged
DEVICE_ID	A string that uniquely identifies a device
CALL_TYPE	An integer that denotes call type: 1 = incoming, 2 = outgoing, 3 = missed
CALL_DURATION	Length of the call session
TRACE	SHA-1 one-way source/target of the call

??? info “PHONE_CONVERSATION”

RAPIDS column	Description
TIMESTAMP	An UNIX timestamp (13 digits) when a row of data was logged
DEVICE_ID	A string that uniquely identifies a device
DOUBLE_ENERGY	A number that denotes the amplitude of an audio sample (L2-norm of the audio frame)
INFERENCE	An integer (ranged from 0 to 3) that denotes the type of an audio sample: 0 = silence, 1 = noise, 2 = voice, 3 = unknown
DOUBLE_CONVO_START	UNIX timestamp (13 digits) of the beginning of a conversation
DOUBLE_CONVO_END	UNIX timestamp (13 digits) of the end of a conversation

??? info “PHONE_KEYBOARD”

RAPIDS column	Description
TIMESTAMP	An UNIX timestamp (13 digits) when a row of data was logged
DEVICE_ID	A string that uniquely identifies a device
PACKAGE_NAME	The application’s package name of keyboard interaction
BEFORE_TEXT	The previous keyboard input (empty if password)
CURRENT_TEXT	The current keyboard input (empty if password)
IS_PASSWORD	An integer: 0 = not password; 1 = password

??? info “PHONE_LIGHT”

RAPIDS column	Description
TIMESTAMP	An UNIX timestamp (13 digits) when a row of data was logged
DEVICE_ID	A string that uniquely identifies a device
DOUBLE_LIGHT_LUX	The ambient luminance in lux units
ACCURACY	An integer that denotes the sensor's accuracy level: 3 = maximum accuracy, 2 = medium accuracy, 1 = low accuracy

??? info “PHONE_LOCATIONS”

RAPIDS column	Description
TIMESTAMP	An UNIX timestamp (13 digits) when a row of data was logged
DEVICE_ID	A string that uniquely identifies a device
DOUBLE_LATITUDE	The location’s latitude, in degrees
DOUBLE_LONGITUDE	The location’s longitude, in degrees
DOUBLE_BEARING	The location’s bearing, in degrees
DOUBLE_SPEED	The speed if available, in meters/second over ground
DOUBLE_ALTITUDE	The altitude if available, in meters above sea level
PROVIDER	A string that denotes the provider: `gps`, `fused` or `network`
ACCURACY	The estimated location accuracy

??? info “PHONE_LOG”

RAPIDS column	Description
TIMESTAMP	An UNIX timestamp (13 digits) when a row of data was logged
DEVICE_ID	A string that uniquely identifies a device
LOG_MESSAGE	A string that denotes log message

??? info “PHONE_MESSAGES”

RAPIDS column	Description
TIMESTAMP	An UNIX timestamp (13 digits) when a row of data was logged
DEVICE_ID	A string that uniquely identifies a device
MESSAGE_TYPE	An integer that denotes message type: 1 = received, 2 = sent
TRACE	SHA-1 one-way source/target of the message

??? info “PHONE_SCREEN”

RAPIDS column	Description
TIMESTAMP	An UNIX timestamp (13 digits) when a row of data was logged
DEVICE_ID	A string that uniquely identifies a device
SCREEN_STATUS	An integer that denotes screen status: 0 = off, 1 = on, 2 = locked, 3 = unlocked

??? info “PHONE_WIFI_CONNECTED”

RAPIDS column	Description
TIMESTAMP	An UNIX timestamp (13 digits) when a row of data was logged
DEVICE_ID	A string that uniquely identifies a device
MAC_ADDRESS	Device’s MAC address
SSID	Currently connected access point network name
BSSID	Currently connected access point MAC address

??? info “PHONE_WIFI_VISIBLE”

RAPIDS column	Description
TIMESTAMP	An UNIX timestamp (13 digits) when a row of data was logged
DEVICE_ID	A string that uniquely identifies a device
SSID	Detected access point network name
BSSID	Detected access point MAC address
SECURITY	Active security protocols
FREQUENCY	Wi-Fi band frequency (e.g., 2427, 5180), in Hz
RSSI	RSSI dB to the scanned device

Documentation

We use mkdocs [https://www.mkdocs.org/] with the material theme [https://squidfunk.github.io/mkdocs-material/] to write these docs. Whenever you make any changes, just push them back to the repo and the documentation will be deployed automatically.

Set up development environment

	Make sure your conda environment is active

	pip install mkdocs

	pip install mkdocs-material

Preview

Run the following command in RAPIDS root folder and go to http://127.0.0.1:8000:

mkdocs serve

File Structure

The documentation config file is /mkdocs.yml, if you are adding new .md files to the docs modify the nav attribute at the bottom of that file. You can use the hierarchy there to find all the files that appear in the documentation.

Reference

Check this page [https://squidfunk.github.io/mkdocs-material/reference/abbreviations/] to get familiar with the different visual elements we can use in the docs (admonitions, code blocks, tables, etc.) You can also refer to /docs/setup/installation.md and /docs/setup/configuration.md to see practical examples of these elements.

!!! hint
Any links to internal pages should be relative to the current page. For example, any link from this page (documentation) which is inside ./developers should begin with ../ to go one folder level up like:
md [mylink](../setup/installation.md)

Extras

You can insert emojis [https://facelessuser.github.io/pymdown-extensions/extensions/emoji/] using this syntax :[SOURCE]-[ICON_NAME] from the following sources:

	https://materialdesignicons.com/

	https://fontawesome.com/icons/tasks?style=solid

	https://primer.style/octicons/

You can use this page [https://www.tablesgenerator.com/markdown_tables] to create markdown tables more easily

Git Flow

We use the develop/master variation of the OneFlow [https://www.endoflineblog.com/oneflow-a-git-branching-model-and-workflow] git flow

Add New Features

We use feature (topic) branches to implement new features

=== “Internal Developer”
You are an internal developer if you have writing permissions to the repository.

Most feature branches are never pushed to the repo, only do so if you expect that its development will take days (to avoid losing your work if you computer is damaged). Otherwise follow the following instructions to locally rebase your feature branch into `develop` and push those rebased changes online.

Starting your feature branch

1. Pull the latest develop
```bash
git checkout develop
git pull
```
1. Create your feature branch
```bash
git checkout -b feature/feature1
```
1. Add, modify or delete the necessary files to add your new feature
1. Update the [change log](../../change-log) (`docs/change-log.md`)
2. Stage and commit your changes using VS Code git GUI or the following commands
```bash
git add modified-file1 modified-file2
git commit -m "Add my new feature" # use a concise description
```

Merging back your feature branch

If your changes took time to be implemented it is possible that there are new commits in our `develop` branch, so we need to rebase your feature branch.

1. Fetch the latest changes to develop
```bash
git fetch origin develop
```

1. Rebase your feature branch
```bash
git checkout feature/feature1
git rebase -i develop
```

1. Integrate your new feature to `develop`
```bash
git checkout develop
git merge --no-ff feature/feature1 # (use the default merge message)
git push origin develop
git branch -d feature/feature1
```


=== “External Developer”
You are an external developer if you do NOT have writing permissions to the repository.

Starting your feature branch

1. Fork and clone our repository on Github
1. Switch to the latest develop
```bash
git checkout develop
```
1. Create your feature branch
```bash
git checkout -b feature/external-test
```
1. Add, modify or delete the necessary files to add your new feature
2. Stage and commit your changes using VS Code git GUI or the following commands
```bash
git add modified-file1 modified-file2
git commit -m "Add my new feature" # use a concise description
```

Merging back your feature branch

If your changes took time to be implemented, it is possible that there are new commits in our `develop` branch, so we need to rebase your feature branch.

1. Add our repo as another `remote`
```bash
git remote add upstream https://github.com/carissalow/rapids/
```

1. Fetch the latest changes to develop
```bash
git fetch upstream develop 
```

1. Rebase your feature branch
```bash
git checkout feature/external-test
git rebase -i develop
```

1. Push your feature branch online
```bash
git push --set-upstream origin feature/external-test
```

1. Open a pull request to the `develop` branch using Github's GUI

Release a New Version

	Pull the latest develop

git checkout develop
git pull

	Create a new release branch

git describe --abbrev=0 --tags # Bump the release (0.1.0 to 0.2.0 => NEW_HOTFIX)
git checkout -b release/v[NEW_RELEASE] develop

	Add new tag

git tag v[NEW_RELEASE]

	Merge and push the release branch

git checkout develop
git merge release/v[NEW_RELEASE]
git push --tags origin develop
git branch -d release/v[NEW_RELEASE]

	Fast-forward master

git checkout master
git merge --ff-only develop
git push # Unlock the master branch before merging

	Release happens automatically after passing the tests

Release a Hotfix

	Pull the latest master

git checkout master
git pull

	Start a hotfix branch

git describe --abbrev=0 --tags # Bump the hotfix (0.1.0 to 0.1.1 => NEW_HOTFIX)
git checkout -b hotfix/v[NEW_HOTFIX] master

	Fix whatever needs to be fixed

	Update the change log

	Tag and merge the hotfix

git tag v[NEW_HOTFIX]
git checkout develop
git merge hotfix/v[NEW_HOTFIX]
git push --tags origin develop
git branch -d hotfix/v[NEW_HOTFIX]

	Fast-forward master

git checkout master
git merge --ff-only v[NEW_HOTFIX]
git push # Unlock the master branch before merging

	Release happens automatically after passing the tests

Remote Support

We use the Live Share extension of Visual Studio Code to debug bugs when sharing data or database credentials is not possible.

	Install Visual Studio Code [https://code.visualstudio.com/]

	Open your RAPIDS root folder in a new VSCode window

	Open a new terminal in Visual Studio Code Terminal > New terminal

	Install the Live Share extension pack [https://marketplace.visualstudio.com/items?itemName=MS-vsliveshare.vsliveshare-pack]

	Press ++ctrl+p++ or ++cmd+p++ and run this command:

>live share: start collaboration session

	Follow the instructions and share the session link you receive

Test Cases

Along with the continued development and the addition of new sensors and features to the RAPIDS pipeline, tests for the currently available sensors and features are being implemented. Since this is a Work In Progress this page will be updated with the list of sensors and features for which testing is available. For each of the sensors listed a description of the data used for testing (test cases) are outline. Currently for all intent and testing purposes the tests/data/raw/test01/ contains all the test data files for testing android data formats and tests/data/raw/test02/ contains all the test data files for testing iOS data formats. It follows that the expected (verified output) are contained in the tests/data/processed/test01/ and tests/data/processed/test02/ for Android and iOS respectively. tests/data/raw/test03/ and tests/data/raw/test04/ contain data files for testing empty raw data files for android and iOS respectively.

The following is a list of the sensors that testing is currently available.

Sensor	Provider	Periodic	Frequency	Event
——————————-	———-	———-	———–	——-
Phone Accelerometer	Panda	Y	Y	Y
Phone Accelerometer	RAPIDS	Y	Y	Y
Phone Activity Recognition	RAPIDS	Y	Y	Y
Phone Applications Foreground	RAPIDS	Y	Y	Y
Phone Battery	RAPIDS	Y	Y	Y
Phone Bluetooth	Doryab	Y	Y	Y
Phone Bluetooth	RAPIDS	Y	Y	Y
Phone Calls	RAPIDS	Y	Y	Y
Phone Conversation	RAPIDS	Y	Y	Y
Phone Data Yield	RAPIDS	Y	Y	Y
Phone Light	RAPIDS	Y	Y	Y
Phone Locations	Doryab	Y	Y	Y
Phone Locations	Barnett	N	N	N
Phone Messages	RAPIDS	Y	Y	Y
Phone Screen	RAPIDS	Y	Y	Y
Phone WiFi Connected	RAPIDS	Y	Y	Y
Phone WiFi Visible	RAPIDS	Y	Y	Y
Fitbit Calories Intraday	RAPIDS	Y	Y	Y
Fitbit Data Yield	RAPIDS	Y	Y	Y
Fitbit Heart Rate Summary	RAPIDS	Y	Y	Y
Fitbit Heart Rate Intraday	RAPIDS	Y	Y	Y
Fitbit Sleep Summary	RAPIDS	Y	Y	Y
Fitbit Sleep Intraday	RAPIDS	Y	Y	Y
Fitbit Sleep Intraday	PRICE	Y	Y	Y
Fitbit Steps Summary	RAPIDS	Y	Y	Y
Fitbit Steps Intraday	RAPIDS	Y	Y	Y

Accelerometer

Description

	The raw accelerometer data file, phone_accelerometer_raw.csv, contains data for 4 separate days

	One episode for each daily segment (night, morning, afternoon and evening)

	Two episodes locate in the same 30-min segment (Fri 00:15:00 and Fri 00:21:21)

	Two episodes locate in the same daily segment (Fri 00:15:00 and Fri 18:12:00)

	One episode before the time switch (Sun 00:02:00) and one episode after the time switch (Sun 04:18:00)

	Multiple episodes within one min which cause variance in magnitude (Fri 00:10:25, Fri 00:10:27 and Fri 00:10:46)

Checklist

time segment	single tz	multi tz	platform
30min	OK	OK	android, ios
morning	OK	OK	android, ios
daily	OK	OK	android, ios
threeday	OK	OK	android, ios
weekend	OK	OK	android, ios
beforeMarchEvent	OK	OK	android, ios
beforeNovemberEvent	OK	OK	android, ios

Messages (SMS)

Description

	The raw message data file, phone_messages_raw.csv, contains data for 4 separate days

	One episode for each daily segment (night, morning, afternoon and evening)

	Two sent episodes locate in the same 30-min segment (Fri 16:08:03.000 and Fri 16:19:35.000)

	Two received episodes locate in the same 30-min segment (Sat 06:45:05.000 and Fri 06:45:05.000)

	Two episodes locate in the same daily segment (Fri 11:57:56.385 and Sat 10:54:10.000)

	One episode before the time switch (Sun 00:48:01.000) and one episode after the time switch (Sun 06:21:01.000)

Checklist

time segment	single tz	multi tz	platform
30min	OK	OK	android
morning	OK	OK	android
daily	OK	OK	android
threeday	OK	OK	android
weekend	OK	OK	android
beforeMarchEvent	OK	OK	android
beforeNovemberEvent	OK	OK	android

Calls

Due to the difference in the format of the raw data for iOS and Android the following is the expected results
the phone_calls.csv.

Description

	One missed episode, one outgoing episode and one incoming episode on Friday night, morning, afternoon and evening

	There is at least one episode of each type of phone calls on each day

	One incoming episode crossing two 30-mins segments

	One outgoing episode crossing two 30-mins segments

	One missed episode before, during and after the event

	There is one incoming episode before, during or after the event

	There is one outcoming episode before, during or after the event

	There is one missed episode before, during or after the event

Data format

Device	Missed	Outgoing	Incoming
android	3	2	1
ios	1,4 or 3,4	3,2,4	1,2,4

Note
When generating test data, all traces for iOS device need to be unique otherwise the episode with duplicate trace will be dropped

Checklist

time segment	single tz	multi tz	platform
30min	OK	OK	android, iOS
morning	OK	OK	android, iOS
daily	OK	OK	android, iOS
threeday	OK	OK	android, iOS
weekend	OK	OK	android, iOS
beforeMarchEvent	OK	OK	android, iOS
beforeNovemberEvent	OK	OK	android, iOS

Screen

Due to the difference in the format of the raw screen data for iOS and Android the following is the expected results the phone_screen.csv.

Description

	The screen data file contains data for 4 days.

	The screen data contains 1 record to represent an unlock
episode that falls within an epoch for every epoch.

	The screen data contains 1 record to represent an unlock
episode that falls across the boundary of 2 epochs. Namely the
unlock episode starts in one epoch and ends in the next, thus
there is a record for unlock episodes that fall across night
to morning, morning to afternoon and finally afternoon to
night

	One episode that crossing two 30-min segments

Data format

Device	unlock
Android	3, 0
iOS	3, 2

Checklist

time segment	single tz	multi tz	platform
30min	OK	OK	android, iOS
morning	OK	OK	android, iOS
daily	OK	OK	android, iOS
threeday	OK	OK	android, iOS
weekend	OK	OK	android, iOS
beforeMarchEvent	OK	OK	android, iOS
beforeNovemberEvent	OK	OK	android, iOS

Battery

Description

	The 4-day raw data is contained in phone_battery_raw.csv

	One discharge episode acrossing two 30-min time segements (Fri 05:57:30.123 to Fri 06:04:32.456)

	One charging episode acrossing two 30-min time segments (Fri 11:55:58.416 to Fri 12:08:07.876)

	One discharge episode and one charging episode locate within the same 30-min time segement (Fri 21:30:00 to Fri 22:00:00)

	One episode before the time switch (Sun 00:24:00.000) and one episode after the time switch (Sun 21:58:00)

	Two episodes locate in the same daily segment

Checklist

time segment	single tz	multi tz	platform
30min	OK	OK	android
morning	OK	OK	android
daily	OK	OK	android
threeday	OK	OK	android
weekend	OK	OK	android
beforeMarchEvent	OK	OK	android
beforeNovemberEvent	OK	OK	android

Bluetooth

Description

	The 4-day raw data is contained in phone_bluetooth_raw.csv

	One episode for each daily segment (night, morning, afternoon and evening)

	Two episodes locate in the same 30-min segment (Fri 23:38:45.789 and Fri 23:59:59.465)

	Two episodes locate in the same daily segment (Fri 00:00:00.798 and Fri 00:49:04.132)

	One episode before the time switch (Sun 00:24:00.000) and one episode after the time switch (Sun 17:32:00.000)

Checklist

time segment	single tz	multi tz	platform
30min	OK	OK	android
morning	OK	OK	android
daily	OK	OK	android
threeday	OK	OK	android
weekend	OK	OK	android
beforeMarchEvent	OK	OK	android
beforeNovemberEvent	OK	OK	android

WIFI

There are two wifi features (phone wifi connected and phone wifi visible). The raw test data are seperatly stored in the phone_wifi_connected_raw.csv and phone_wifi_visible_raw.csv.

Description

	One episode for each epoch (night, morining, afternoon and evening)

	Two two episodes in the same time segment (daily and 30-min)

	Two episodes around the transition of epochs (e.g. one at the end of night and one at the beginning of morning)

	One episode before and after the time switch on Sunday

phone wifi connected

Checklist

time segment	single tz	multi tz	platform
30min	OK	OK	android, iOS
morning	OK	OK	android, iOS
daily	OK	OK	android, iOS
threeday	OK	OK	android, iOS
weekend	OK	OK	android, iOS
beforeMarchEvent	OK	OK	android, iOS
beforeNovemberEvent	OK	OK	android, iOS

phone wifi visible

Checklist

time segment	single tz	multi tz	platform
30min	OK	OK	android
morning	OK	OK	android
daily	OK	OK	android
threeday	OK	OK	android
weekend	OK	OK	android
beforeMarchEvent	OK	OK	android
beforeNovemberEvent	OK	OK	android

Light

Description

	The 4-day raw light data is contained in phone_light_raw.csv

	One episode for each daily segment (night, morning, afternoon and evening)

	Two episodes locate in the same 30-min segment (Fri 00:07:27.000 and Fri 00:12:00.000)

	Two episodes locate in the same daily segment (Fri 01:00:00 and Fri 03:59:59.654)

	One episode before the time switch (Sun 00:08:00.000) and one episode after the time switch (Sun 05:36:00.000)

Checklist

time segment	single tz	multi tz	platform
30min	OK	OK	android
morning	OK	OK	android
daily	OK	OK	android
threeday	OK	OK	android
weekend	OK	OK	android
beforeMarchEvent	OK	OK	android
beforeNovemberEvent	OK	OK	android

Locations

Description

	The participant’s home location is (latitude=1, longitude=1).

	From Sat 10:56:00 to Sat 11:04:00, the center of the cluster is (latitude=-100, longitude=-100).

	From Sun 03:30:00 to Sun 03:47:00, the center of the cluster is (latitude=1, longitude=1). Home location is extracted from this period.

	From Sun 11:30:00 to Sun 11:38:00, the center of the cluster is (latitude=100, longitude=100).

Application Foreground

	The 4-day raw application data is contained in phone_applications_foreground_raw.csv

	One episode for each daily segment (night, morning, afternoon and evening)

	Two episodes locate in the same 30-min segment (Fri 10:12:56.385 and Fri 10:18:48.895)

	Two episodes locate in the same daily segment (Fri 11:57:56.385 and Fri 12:02:56.385)

	One episode before the time switch (Sun 00:07:48.001) and one episode after the time switch (Sun 05:10:30.001)

	Two custom category (Dating) episode, one at Fri 06:05:10.385, another one at Fri 11:53:00.385

	One episode for an application containing a special character (Pokémon GO) at Mon 21:29:46.001

Checklist:

time segment	single tz	multi tz	platform
30min	OK	OK	android
morning	OK	OK	android
daily	OK	OK	android
threeday	OK	OK	android
weekend	OK	OK	android
beforeMarchEvent	OK	OK	android
beforeNovemberEvent	OK	OK	android

Activity Recognition

Description

	The 4-day raw activity data is contained in plugin_google_activity_recognition_raw.csv and plugin_ios_activity_recognition_raw.csv.

	Two episodes locate in the same 30-min segment (Fri 04:01:54 and Fri 04:13:52)

	One episode for each daily segment (night, morning, afternoon and evening)

	Two episodes locate in the same daily segment (Fri 05:03:09 and Fri 05:50:36)

	Two episodes with the time difference less than 5 mins threshold (Fri 07:14:21 and Fri 07:18:50)

	One episode before the time switch (Sun 00:46:00) and one episode after the time switch (Sun 03:42:00)

Checklist

time segment	single tz	multi tz	platform
30min	OK	OK	android, iOS
morning	OK	OK	android, iOS
daily	OK	OK	android, iOS
threeday	OK	OK	android, iOS
weekend	OK	OK	android, iOS
beforeMarchEvent	OK	OK	android, iOS
beforeNovemberEvent	OK	OK	android, iOS

Conversation

The 4-day raw conversation data is contained in phone_conversation_raw.csv. The different inference records are
randomly distributed throughout the epoch.

Description

	One episode for each daily segment (night, morning, afternoon and evening) on each day

	Two episodes near the transition of the daily segment, one starts at the end of the afternoon, Fri 17:10:00 and another one starts at the beginning of the evening, Fri 18:01:00

	One episode across two segments, daily and 30-mins, (from Fri 05:55:00 to Fri 06:00:41)

	Two episodes locate in the same daily segment (Sat 12:45:36 and Sat 16:48:22)

	One episode before the time switch, Sun 00:15:06, and one episode after the time switch, Sun 06:01:00

Data format

inference	type
0	silence
1	noise
2	voice
3	unknown

Checklist

time segment	single tz	multi tz	platform
30min	OK	OK	android
morning	OK	OK	android
daily	OK	OK	android
threeday	OK	OK	android
weekend	OK	OK	android
beforeMarchEvent	OK	OK	android
beforeNovemberEvent	OK	OK	android

Keyboard

	The raw keyboard data file contains data for 4 days.

	The raw keyboard data contains records with difference in timestamp ranging from
milliseconds to seconds.

	With difference in timestamps between consecutive records more than 5 seconds helps us to create separate
sessions within the usage of the same app. This helps to verify the case where sessions have to be different.

	The raw keyboard data contains records where the difference in text is less
than 5 seconds which makes it into 1 session but because of difference of app
new session starts. This edge case determines the behaviour within particular app
and also within 5 seconds.

	The raw keyboard data also contains the records where length of current_text varies between consecutive rows. This helps us to tests on the cases where input text is entered by auto-suggested
or auto-correct operations.

	One three-minute episode with a 1-minute row on Sun 08:59:54.65 and 09:00:00,another on Sun 12:01:02 that are considering a single episode in multi-timezone event segments to showcase how
inferring time zone data for Keyboard from phone data can produce inaccurate results around the tz change. This happens because the device was on LA time until 11:59 and switched to NY time at 12pm, in terms of actual time 09 am LA and 12 pm NY represent the same moment in time so 09:00 LA and 12:01 NY are consecutive minutes.

Application Episodes

	The feature requires raw application foreground data file and raw phone screen data file

	The raw data files contains data for 4 day.

	The raw conversation data contains records with difference in timestamp ranging from milliseconds to minutes.

	An app episode starts when an app is launched and ends when another app is launched, marking the episode end of the first one,
or when the screen locks. Thus, we are taking into account the screen unlock episodes.

	There are multiple apps usage within each screen unlock episode to verify creation of different app episodes in each
screen unlock session. In the screen unlock episode starting from Fri 05:56:51, Fri 10:00:24, Sat 17:48:01, Sun 22:02:00, and Mon 21:05:00 we have multiple apps, both system and non-system apps, to check this.

	The 22 minute chunk starting from Fri 10:03:56 checks app episodes for system apps only.

	The screen unlock episode starting from Mon 21:05:00 and Sat 17:48:01 checks if the screen lock marks the end of episode for that particular app which was launched a few milliseconds to 8 mins before the screen lock.

	Finally, since application foreground is only for Android devices, this feature is also for Android devices only. All other files are empty data files

Data Yield

Description

	Two sensors were picked for testing, phone_screen and phone_light. phone_screen is event based and phone_light is sampling at regular frequency

	A 31-min episode (from Fri 01:00:00 to Fri 01:30:00) in phone_light data, which is considered as a validyieldedhours

Checklist

time segment	single tz	multi tz	platform
30min	OK	OK	android, ios
morning	OK	OK	android, ios
daily	OK	OK	android, ios
threeday	OK	OK	android, ios
weekend	OK	OK	android, ios
beforeMarchEvent	OK	OK	android, ios
beforeNovemberEvent	OK	OK	android, ios

Fitbit Calories Intraday

Description

	A five-minute sedentary episode on Fri 11:00:00

	A one-minute sedentary episode on Sun 02:00:00. It exists in November but not in February in STZ

	A five-minute sedentary episode on Fri 11:58:00. It is split within two 30-min segments and the morning

	A three-minute lightly active episode on Fri 11:10:00, a one-minute at 11:18:00 and a one-minute 11:24:00. These check for start and end times of first/last/longest episode

	A three-minute fairly active episode on Fri 11:40:00, a one-minute at 11:48:00 and a one-minute 11:54:00. These check for start and end times of first/last/longest episode

	A three-minute very active episode on Fri 12:10:00, a one-minute at 12:18:00 and a one-minute 12:24:00. These check for start and end times of first/last/longest episode

	A eight-minute MVPA episode with intertwined fairly and very active rows on Fri 12:30:00

	The above episodes contain six higmet (>= 3 MET) episodes and nine lowmet episodes.

	One two-minute sedentary episode with a 1-minute row on Sun 09:00:00 and another on Sun 12:01:01 that are considering a single episode in multi-timezone event segments to showcase how inferring time zone data for Fitbit from phone data can produce inaccurate results around the tz change. This happens because the device was on LA time until 11:59 and switched to NY time at 12pm, in terms of actual time 09 am LA and 12 pm NY represent the same moment in time so 09:00 LA and 12:01 NY are consecutive minutes.

	A three-minute sedentary episode on Sat 08:59 that will be ignored for multi-timezone event segments.

	A three-minute sedentary episode on Sat 12:59 of which the first minute will be ignored for multi-timezone event segments since the test segment starts at 13:00

	A three-minute sedentary episode on Sat 16:00

	A four-minute sedentary episode on Sun 10:01 that will be ignored for Novembers’s multi-timezone event segments since the test segment ends at 10am on that weekend.

	A three-minute very active episode on Sat 16:03. This episode and the one at 16:00 are counted as one for lowmet episodes

Checklist

time segment	single tz	multi tz	platform
30min	OK	OK	fitbit
morning	OK	OK	fitbit
daily	OK	OK	fitbit
threeday	OK	OK	fitbit
weekend	OK	OK	fitbit
beforeMarchEvent	OK	OK	fitbit
beforeNovemberEvent	OK	OK	fitbit

Fitbit Heartrate intraday

Description:

	The 4-day raw heartrate data is contained in fitbit_heartrate_intraday_raw.csv

	One episode for each daily segment (night, morning, afternoon and evening)

	Two episodes locate in the same 30-min segment (Fri 00:49:00 and Fri 00:52:00)

	Two different types of heartrate zone episodes locate in the same 30-min segment (Fri 05:49:00 outofrange and Fri 05:57:00 fatburn)

	Two episodes locate in the same daily segment (Fri 12:02:00 and Fri 19:38:00)

	One episode before the time switch, Sun 00:08:00, and one episode after the time switch, Sun 07:28:00

Checklist

time segment	single tz	multi tz	platform
30min	OK	OK	fitbit
morning	OK	OK	fitbit
daily	OK	OK	fitbit
threeday	OK	OK	fitbit
weekend	OK	OK	fitbit
beforeMarchEvent	OK	OK	fitbit
beforeNovemberEvent	OK	OK	fitbit

Fitbit Sleep Summary

Description

	A main sleep episode that starts on Fri 20:00:00 and ends on Sat 02:00:00. This episode starts after 11am (Last Night End) which will be considered as today’s (Fri) data.

	A nap that starts on Sat 04:00:00 and ends on Sat 06:00:00. This episode starts before 11am (Last Night End) which will be considered as yesterday’s (Fri) data.

	A nap that starts on Sat 13:00:00 and ends on Sat 15:00:00. This episode starts after 11am (Last Night End) which will be considered as today’s (Sat) data.

	A main sleep that starts on Sun 01:00:00 and ends on Sun 12:00:00. This episode starts before 11am (Last Night End) which will be considered as yesterday’s (Sat) data.

	A main sleep that starts on Sun 23:00:00 and ends on Mon 07:00:00. This episode starts after 11am (Last Night End) which will be considered as today’s (Sun) data.

	Any segment shorter than one day will be ignored for sleep RAPIDS features.

Checklist

time segment	single tz	multi tz	platform
30min	OK	OK	fitbit
morning	OK	OK	fitbit
daily	OK	OK	fitbit
threeday	OK	OK	fitbit
weekend	OK	OK	fitbit
beforeMarchEvent	OK	OK	fitbit
beforeNovemberEvent	OK	OK	fitbit

Fitbit Sleep Intraday

Description

	A five-minute main sleep episode with asleep-classic level on Fri 11:00:00.

	An eight-hour main sleep episode on Fri 17:00:00. It is split into 2 parts for daily segment: a seven-hour sleep episode on Fri 17:00:00 and an one-hour sleep episode on Sat 00:00:00.

	A two-hour nap on Sat 01:00:00 that will be ignored for main sleep features.

	An one-hour nap on Sat 13:00:00 that will be ignored for main sleep features.

	An eight-hour main sleep episode on Sat 22:00:00. This episode ends on Sun 08:00:00 (NY) for March and Sun 06:00:00 (NY) for Novembers due to daylight savings. It will be considered for beforeMarchEvent segment and ignored for beforeNovemberEvent segment.

	A nine-hour main sleep episode on Sun 11:00:00. Start time will be assigned as NY time zone and converted to 14:00:00.

	A seven-hour main sleep episode on Mon 06:00:00. This episode will be split into two parts: a five-hour sleep episode on Mon 06:00:00 and a two-hour sleep episode on Mon 11:00:00. The first part will be discarded as it is before 11am (Last Night End)

	Any segment shorter than one day will be ignored for sleep PRICE features.

Checklist

time segment	single tz	multi tz	platform
30min	OK	OK	fitbit
morning	OK	OK	fitbit
daily	OK	OK	fitbit
threeday	OK	OK	fitbit
weekend	OK	OK	fitbit
beforeMarchEvent	OK	OK	fitbit
beforeNovemberEvent	OK	OK	fitbit

Fitbit Heartrate Summary

Description

	The 4-day raw heartrate summary data is contained in fitbit_heartrate_summary_raw.csv.

	As heartrate summary is periodic, it only generates results in periodic feature, there will be no result in frequency and event.

Checklist

time segment	single tz	multi tz	platform
30min	OK	OK	fitbit
morning	OK	OK	fitbit
daily	OK	OK	fitbit
threeday	OK	OK	fitbit
weekend	OK	OK	fitbit
beforeMarchEvent	OK	OK	fitbit
beforeNovemberEvent	OK	OK	fitbit

Fitbit Step Intraday

Description

	The 4-day raw step summary data is contained in fitbit_steps_intraday_raw.csv

	One episode for each daily segment (night, morning, afternoon and evening) on each day

	Two episodes within the same 30-min segment (Fri 05:58:00 and Fri 05:59:00)

	A one-min episode at 2020-03-07 09:00:00 that will be converted to New York time 2020-03-07 12:00:00

	One episode before the time switch, Sun 00:19:00, and one episode after the time switch, Sun 09:01:00

	Episodes cross two 30-min segments (Fri 11:59:00 and Fri 12:00:00)

Checklist

time segment	single tz	multi tz	platform
30min	OK	OK	fitbit
morning	OK	OK	fitbit
daily	OK	OK	fitbit
threeday	OK	OK	fitbit
weekend	OK	OK	fitbit
beforeMarchEvent	OK	OK	fitbit
beforeNovemberEvent	OK	OK	fitbit

Fitbit Step Summary

Description

	The 4-day calculated step summary data is contained in fitbit_steps_summary_raw.csv.

	The 4-day calculated step volatility summary data is contained infitbit_steps_summary_raw.csv.

	Step summary including max, min, median, mean and standard deviation value.

	Volatility summary including max, min, median, mean, standard deviation and annulized volatility value.

	As step summary is periodic, it only generates results in periodic feature, there will be no result in frequency and event.

Checklist

time segment	single tz	multi tz	platform
30min	OK	OK	fitbit
morning	OK	OK	fitbit
daily	OK	OK	fitbit
threeday	OK	OK	fitbit
weekend	OK	OK	fitbit
beforeMarchEvent	OK	OK	fitbit
beforeNovemberEvent	OK	OK	fitbit

Fitbit Data Yield

Checklist

time segment	single tz	multi tz	platform
30min	OK	OK	fitbit
morning	OK	OK	fitbit
daily	OK	OK	fitbit
threeday	OK	OK	fitbit
weekend	OK	OK	fitbit
beforeMarchEvent	OK	OK	fitbit
beforeNovemberEvent	OK	OK	fitbit

Testing

The following is a simple guide to run RAPIDS’ tests. All files necessary for testing are stored in the ./tests/ directory

Steps for Testing

??? check “Testing Overview”
1. You have to create a single four day test dataset for the sensor you are working on.
2. You will adjust your dataset with tests/script/assign_test_timestamps.py to fit Fri March 6th 2020 - Mon March 9th 2020 and Fri Oct 30th 2020 - Mon Nov 2nd 2020. We test daylight saving times with these dates.
2. We have one test participant per platform (pids: android, ios, fitbit, empatica, empty). The data device_id should be equal to the pid.
2. We will run this test dataset against six test pipelines, three for frequency, periodic, and event time segments in a single time zone, and the same three in multiple time zones.
3. You will have to create your test data to cover as many corner cases as possible. These cases depend on the sensor you are working on.
4. The time segments and time zones to be tested are:

??? example "Frequency"
 - 30 minutes (`30min,30`)

??? example "Periodic"
 - morning (`morning,06:00:00,5H 59M 59S,every_day,0`)
 - daily (`daily,00:00:00,23H 59M 59S,every_day,0`)
 - three-day segments that repeat every day (`threeday,00:00:00,71H 59M 59S,every_day,0`)
 - three-day segments that repeat every Friday (`weekend,00:00:00,71H 59M 59S,wday,5`)

??? example "Event"
 - A segment that starts 3 hour before an event (Sat Mar 07 2020 19:00:00 EST) and lasts for 22 hours. Note that the last part of this segment will happen during a daylight saving change on Sunday at 2am when the clock moves forward and the period 2am-3am does not exist. In this case, the segment would start on Sat Mar 07 2020 16:00:00 EST (timestamp: 1583614800000) and end on Sun Mar 08 2020 15:00:00 EST (timestamp: 1583694000000). (`beforeMarchEvent,1583625600000,22H,3H,-1,android`)
 - A segment that starts 3 hour before an event (Sat Oct 31 2020 19:00:00 EST) and lasts for 22 hours. Note that the last part of this segment will happen during a daylight saving change on Sunday at 2am when the clock moves back and the period 1am-2am exists twice. In this case, the segment would start on Sat Oct 31 2020 16:00:00 EST (timestamp: 1604174400000) and end on Sun Nov 01 2020 13:00:00 EST (timestamp: 1604253600000). (`beforeNovemberEvent,1604185200000,22H,3H,-1,android`)

??? example "Single time zone to test"
 America/New_York

??? example "Multi time zones to test"
 - America/New_York starting at `0`
 - America/Los_Angeles starting at `1583600400000` (Sat Mar 07 2020 12:00:00 EST)
 - America/New_York starting at `1583683200000` (Sun Mar 08 2020 12:00:00 EST)
 - America/Los_Angeles starting at `1604160000000` (Sat Oct 31 2020 12:00:00 EST)
 - America/New_York starting at `1604250000000` (Sun Nov 01 2020 12:00:00 EST)

??? hint "Understanding event segments with multi timezones"
 <figure>

 </figure>

??? check “Document your tests”

- Before you start implementing any test data you need to document your tests.
- The documentation of your tests should be added to `docs/developers/test-cases.md` under the corresponding sensor.
- You will need to add two subsections `Description` and the `Checklist`
- The amount of data you need depends on each sensor but you can be efficient by creating data that covers corner cases in more than one time segment. For example, a battery episode from 11am to 1pm, covers the case when an episode has to be split for 30min frequency segments and for morning segments.
- As a rule of thumb think about corner cases for 30min segments as they will give you the most flexibility.
- Only add tests for iOS if the raw data format is different than Android's (for example for screen)
- Create specific tests for Sunday before and after 02:00. These will test daylight saving switches, in March 02:00 to 02:59 do not exist, and in November 01:00 to 01:59 exist twice (read below how `tests/script/assign_test_timestamps.py` handles this)

??? example "Example of Description"
 `Description` is a list and every item describes the different scenarios your test data is covering. For example, if we are testing PHONE_BATTERY:

    ```
    - We test 24 discharge episodes, 24 charge episodes and 2 episodes with a 0 discharge rate
    - One episode is shorter than 30 minutes (`start timestamp` to `end timestamp`)
    - One episode is 120 minutes long from 11:00 to 13:00 (`start timestamp` to `end timestamp`). This one covers the case when an episode has to be chunked for 30min frequency segments and for morning segments
    - One episode is 60 minutes long from 23:30 to 00:30 (`start timestamp` to `end timestamp`). This one covers the case when an episode has to be chunked for 30min frequency segments and for daly segments (overnight)
    - One 0 discharge rate episode 10 minutes long that happens within a 30-minute segment (10:00 to 10:29) (`start timestamp` to `end timestamp`)
    - Three discharge episodes that happen between during beforeMarchEvent (start/end timestamps of those discharge episodes)
    - Three charge episodes that happen between during beforeMarchEvent (start/end timestamps of those charge episodes)
    - One discharge episode that happen between 00:30 and 04:00 to test for daylight saving times in March and Novemeber 2020.
    - ... any other test corner cases you can think of
    ```

 Describe your test cases in as much detail as possible so in the future if we find a bug in RAPIDS, we know what test case we did not include and should add.

??? example "Example of Checklist"
 `Checklist` is a table where you confirm you have verified the output of your dataset for the different time segments and time zones

 |time segment| single tz | multi tz|platform|
 |-|-|-|-|
 |30min|OK|OK|android and iOS|
 |morning|OK|OK|android and iOS|
 |daily|OK|OK|android and iOS|
 |threeday|OK|OK|android and iOS|
 |weekend|OK|OK|android and iOS|
 |beforeMarchEvent|OK|OK|android and iOS|
 |beforeNovemberEvent|OK|OK|android and iOS|

??? check “Add raw input data.”
1. Add the raw test data to the corresponding sensor CSV file in tests/data/manual/aware_csv/SENSOR_raw.csv. Create the CSV if it does not exist.
2. The test data you create will have the same columns as normal raw data except test_time replaces timestamp. To make your life easier, you can place a test data row in time using the test_time column with the following format: Day HH:MM:SS.XXX, for example Fri 22:54:30.597.
2. You can convert your manual test data to actual raw test data with the following commands:

 - For the selected files: (It could be a single file name or multiple file names separated by whitespace(s))
        ```
        python tests/scripts/assign_test_timestamps.py -f file_name_1 file_name_2
        ```

 - For all files under the `tests/data/manual/aware_csv` folder:
        ```
        python tests/scripts/assign_test_timestamps.py -a
        ```

2. The script `assign_test_timestamps.py` converts you `test_time` column into a `timestamp`. For example, `Fri 22:54:30.597` is converted to `1583553270597` (`Fri Mar 06 2020 22:54:30 GMT-0500`) and to `1604112870597` (`Fri Oct 30 2020 22:54:30 GMT-0400`). Note you can include milliseconds.
2. The `device_id` should be the same as `pid`.

??? example "Example of test data you need to create"
 The `test_time` column will be automatically converted to a timestamp that fits our testing periods in March and November by `tests/script/assign_test_timestamps.py`

    ```
    test_time,device_id,battery_level,battery_scale,battery_status
    Fri 01:00:00.000,ios,90,100,4
    Fri 01:00:30.500,ios,89,100,4
    Fri 01:01:00.000,ios,80,100,4
    Fri 01:01:45.500,ios,79,100,4
    ...
    Sat 08:00:00.000,ios,78,100,4
    Sat 08:01:00.000,ios,50,100,4
    Sat 08:02:00.000,ios,49,100,4
    ```


??? check “Add expected output data.”
1. Add or update the expected output feature file of the participant and sensor you are testing:
```bash
tests/data/processed/features/{type_of_time_segment}/{pid}/device_sensor.csv

# this example is expected output data for battery tests for periodic segments in a single timezone
tests/data/processed/features/stz_periodic/android/phone_sensor.csv 

# this example is expected output data for battery tests for periodic segments in multi timezones
tests/data/processed/features/mtz_periodic/android/phone_sensor.csv 
```


??? check “Edit the config file(s).”
1. Activate the sensor provider you are testing if it isn’t already. Set [SENSOR][PROVIDER][COMPUTE] to TRUE in the config.yaml of the time segments and time zones you are testing:
```yaml
- tests/settings/stz_frequency_config.yaml # For single-timezone frequency time segments
- tests/settings/stz_periodic_config.yaml # For single-timezone periodic time segments
- tests/settings/stz_event_config.yaml # For single-timezone event time segments

- tests/settings/mtz_frequency_config.yaml # For multi-timezone frequency time segments
- tests/settings/mtz_periodic_config.yaml # For multi-timezone periodic time segments
- tests/settings/mtz_event_config.yaml # For multi-timezone event time segments
```


??? check “Run the pipeline and tests.”
1. You can run all six segment pipelines and their tests
bash bash tests/scripts/run_tests.sh -t all
2. You can run only the pipeline of a specific time segment and its tests
bash bash tests/scripts/run_tests.sh -t stz_frequency -a both # swap stz_frequency for mtz_frequency, stz_event, mtz_event, etc
2. Or, if you are working on your tests and you want to run a pipeline and its tests independently
bash bash tests/scripts/run_tests.sh -t stz_frequency -a run bash tests/scripts/run_tests.sh -t stz_frequency -a test

??? hint "How does the test execution work?"
 This bash script `tests/scripts/run_tests.sh` executes one or all test pipelines for different time segment types (`frequency`, `periodic`, and `events`) and single or multiple timezones.

 The python script `tests/scripts/run_tests.py` runs the tests. It parses the involved participants and active sensor providers in the `config.yaml` file of the time segment type and time zone being tested. We test that the output file we expect exists and that its content matches the expected values.

??? example "Output Example"
 The following is a snippet of the output you should see after running your test.

    ```bash
    test_sensors_files_exist (test_sensor_features.TestSensorFeatures) ... stz_periodic
    ok
    test_sensors_features_calculations (test_sensor_features.TestSensorFeatures) ... stz_periodic
    ok

    test_sensors_files_exist (test_sensor_features.TestSensorFeatures) ... stz_frequency
    ok
    test_sensors_features_calculations (test_sensor_features.TestSensorFeatures) ... stz_frequency
    FAIL
    ```

 The results above show that the for stz_periodic, both `test_sensors_files_exist` and `test_sensors_features_calculations` passed. While for stz_frequency, the first test `test_sensors_files_exist` passed while `test_sensors_features_calculations` failed. Additionally, you should get the traceback of the failure (not shown here).

Validation schema of config.yaml

!!! hint “Why do we need to validate the config.yaml?”
Most of the key/values in the config.yaml are constrained to a set of possible values or types. For example [TIME_SEGMENTS][TYPE] can only be one of ["FREQUENCY", "PERIODIC", "EVENT"], and [TIMEZONE] has to be a string.

We should show the user an error if that's not the case. We could validate this in Python or R but since we reuse scripts and keys in multiple places, tracking these validations can be time consuming and get out of control. Thus, we do these validations through a schema and check that schema before RAPIDS starts processing any data so the user can see the error right away.

Keep in mind these validations can only cover certain base cases. Some validations that require more complex logic should still be done in the respective script. For example, we can check that a CSV file path actually ends in `.csv` but we can only check that the file actually exists in a Python script.

The structure and values of the config.yaml file are validated using a YAML schema stored in tools/config.schema.yaml. Each key in config.yaml, for example PIDS, has a corresponding entry in the schema where we can validate its type, possible values, required properties, min and max values, among other things.

The config.yaml is validated against the schema every time RAPIDS runs (see the top of the Snakefile):

validate(config, "tools/config.schema.yaml")

Structure of the schema

The schema has three main sections required, definitions, and properties. All of them are just nested key/value YAML pairs, where the value can be a primitive type (integer, string, boolean, number) or can be another key/value pair (object).

required

required lists properties that should be present in the config.yaml. We will almost always add every config.yaml key to this list (meaning that the user cannot delete any of those keys like TIMEZONE or PIDS).

definitions

definitions lists key/values that are common to different properties so we can reuse them. You can define a key/value under definitions and use $ref to refer to it in any property.

For example, every sensor like [PHONE_ACCELEROMETER] has one or more providers like RAPIDS and PANDA, these providers have some common properties like the COMPUTE flag or the SRC_SCRIPT string. Therefore we define a shared provider “template” that is used by every provider and extended with properties exclusive to each one of them. For example:

=== “provider definition (template)”
The PROVIDER definition will be used later on different properties.

```yaml
PROVIDER:
    type: object
    required: [COMPUTE, SRC_SCRIPT, FEATURES]
    properties:
    COMPUTE:
        type: boolean
    FEATURES:
        type: [array, object]
    SRC_SCRIPT:
        type: string
        pattern: "^.*\\.(py|R)$"
```


=== “provider reusing and extending the template”
Notice that RAPIDS (a provider) uses and extends the PROVIDER template in this example. The FEATURES key is overriding the FEATURES key from the #/definitions/PROVIDER template but is keeping the validation for COMPUTE, and SRC_SCRIPT. For more details about reusing properties, go to this link [http://json-schema.org/understanding-json-schema/structuring.html#reuse]

```yaml hl_lines="9 10"
PHONE_ACCELEROMETER:
    type: object
     # .. other properties
    PROVIDERS:
        type: ["null", object]
        properties:
        RAPIDS:
            allOf:
            - $ref: "#/definitions/PROVIDER"
            - properties:
                FEATURES: 
                    type: array
                    uniqueItems: True
                    items:
                    type: string
                    enum: ["maxmagnitude", "minmagnitude", "avgmagnitude", "medianmagnitude", "stdmagnitude"]
```


properties

properties are nested key/values that describe the different components of our config.yaml file. Values can be of one or more primitive types like string, number, array, boolean and null. Values can also be another key/value pair (of type object) that are similar to a dictionary in Python.

For example, the following property validates the PIDS of our config.yaml. It checks that PIDS is an array with unique items of type string.

PIDS:
 type: array
 uniqueItems: True
 items:
 type: string

Modifying the schema

!!! hint “Validating the config.yaml during development”
If you updated the schema and want to check the config.yaml is compliant, you can run the command snakemake --list-params-changes. You will see Building DAG of jobs... if there are no problems or an error message otherwise (try setting any COMPUTE flag to a string like test instead of False/True).

You can use this command without having to configure RAPIDS to process any participants or sensors.

You can validate different aspects of each key/value in our config.yaml file:

=== “number/integer”
Including min and max values
```yaml
MINUTE_RATIO_THRESHOLD_FOR_VALID_YIELDED_HOURS:
type: number
minimum: 0
maximum: 1

FUSED_RESAMPLED_CONSECUTIVE_THRESHOLD:
    type: integer
    exclusiveMinimum: 0
```


=== “string”
Including valid values (enum)
yaml items: type: string enum: ["count", "maxlux", "minlux", "avglux", "medianlux", "stdlux"]
=== “boolean”
yaml MINUTES_DATA_USED: type: boolean
=== “array”
Including whether or not it should have unique values, the type of the array’s elements (strings, numbers) and valid values (enum).
yaml MESSAGES_TYPES: type: array uniqueItems: True items: type: string enum: ["received", "sent"]
=== “object”
PARENT is an object that has two properties. KID1 is one of those properties that are, in turn, another object that will reuse the "#/definitions/PROVIDER" definition AND also include (extend) two extra properties GRAND_KID1 of type array and GRAND_KID2 of type number. KID2 is another property of PARENT of type boolean.

The schema validation looks like this
```yaml
PARENT:
    type: object
    properties:
      KID1:
        allOf:
          - $ref: "#/definitions/PROVIDER"
          - properties:
              GRAND_KID1:
                type: array
                uniqueItems: True
              GRAND_KID2:
                type: number
      KID2:
        type: boolean
```

The `config.yaml` key that the previous schema validates looks like this:
```yaml
PARENT:
    KID1:
        # These four come from the `PROVIDER` definition (template)
        COMPUTE: False
        FEATURES: [x, y] # an array
        SRC_SCRIPT: "a path to a py or R script"

        # This two come from the extension
        GRAND_KID1: [a, b] # an array
        GRAND_KID2: 5.1 # an number
     KID2: True # a boolean
```


Verifying the schema is correct

We recommend that before you start modifying the schema you modify the config.yaml key that you want to validate with an invalid value. For example, if you want to validate that COMPUTE is boolean, you set COMPUTE: 123. Then create your validation, run snakemake --list-params-changes and make sure your validation fails (123 is not boolean), and then set the key to the correct value. In other words, make sure it’s broken first so that you know that your validation works.

!!! warning
Be careful. You can check that the schema config.schema.yaml has a valid format by running python tools/check_schema.py. You will see this message if its structure is correct: Schema is OK. However, we don’t have a way to detect typos, for example allOf will work but allOF won’t (capital F) and it won’t show any error. That’s why we recommend to start with an invalid key/value in your config.yaml so that you can be sure the schema validation finds the problem.

Useful resources

Read the following links to learn more about what we can validate with schemas. They are based on JSON instead of YAML schemas but the same concepts apply.

	Understanding JSON Schemas [http://json-schema.org/understanding-json-schema/index.html]

	Specification of the JSON schema we use [https://tools.ietf.org/html/draft-handrews-json-schema-01]

Python Virtual Environment

Add new packages

Try to install any new package using conda install -c CHANNEL PACKAGE_NAME (you can use pip if the package is only available there). Make sure your Python virtual environment is active (conda activate YOUR_ENV).

Remove packages

Uninstall packages using the same manager you used to install them conda remove PACKAGE_NAME or pip uninstall PACKAGE_NAME

Updating all packages

Make sure your Python virtual environment is active (conda activate YOUR_ENV), then run

conda update --all

Update your conda environment.yaml

After installing or removing a package you can use the following command in your terminal to update your environment.yaml before publishing your pipeline. Note that we ignore the package version for libfortran and mkl to keep compatibility with Linux:

conda env export --no-builds | sed 's/^.*libgfortran.*$/ - libgfortran/' | sed 's/^.*mkl=.*$/ - mkl/' > environment.yml

R Virtual Environment

Add new packages

	Open your terminal and navigate to RAPIDS’ root folder

	Run R to open an R interactive session

	Run renv::install("PACKAGE_NAME")

Remove packages

	Open your terminal and navigate to RAPIDS’ root folder

	Run R to open an R interactive session

	Run renv::remove("PACKAGE_NAME")

Updating all packages

	Open your terminal and navigate to RAPIDS’ root folder

	Run R to open an R interactive session

	Run renv::update()

Update your R renv.lock

After installing or removing a package you can use the following command in your terminal to update your renv.lock before publishing your pipeline.

	Open your terminal and navigate to RAPIDS’ root folder

	Run R to open an R interactive session

	Run renv::snapshot() (renv will ask you to confirm any updates to this file)

Add New Features

!!! hint
- We recommend reading the Behavioral Features Introduction before reading this page.
- You can implement new features in Python or R scripts.
- You won’t have to deal with time zones, dates, times, data cleaning, or preprocessing. The data that RAPIDS pipes to your feature extraction code are ready to process.

New Features for Existing Sensors

You can add new features to any existing sensors (see list below) by adding a new provider in three steps:

	Modify the config.yaml file

	Create your feature provider script

	Implement your features extraction code

As a tutorial, we will add a new provider for PHONE_ACCELEROMETER called VEGA that extracts feature1, feature2, feature3 with a Python script that requires a parameter from the user called MY_PARAMETER.

??? info “Existing Sensors”
An existing sensor of any device with a configuration entry in config.yaml:

Smartphone (AWARE)

- Phone Accelerometer
- Phone Activity Recognition
- Phone Applications Crashes
- Phone Applications Foreground
- Phone Applications Notifications
- Phone Battery
- Phone Bluetooth
- Phone Calls
- Phone Conversation
- Phone Data Yield
- Phone Keyboard
- Phone Light
- Phone Locations
- Phone Log
- Phone Messages
- Phone Screen
- Phone WiFI Connected
- Phone WiFI Visible

Fitbit

- Fitbit Data Yield
- Fitbit Heart Rate Summary
- Fitbit Heart Rate Intraday
- Fitbit Sleep Summary
- Fitbit Sleep Intraday
- Fitbit Steps Summary
- Fitbit Steps Intraday

Empatica

- Empatica Accelerometer
- Empatica Heart Rate
- Empatica Temperature
- Empatica Electrodermal Activity
- Empatica Blood Volume Pulse
- Empatica Inter Beat Interval
- Empatica Tags

Modify the config.yaml file

In this step, you need to add your provider configuration section under the relevant sensor in config.yaml. See our example for our tutorial’s VEGA provider for PHONE_ACCELEROMETER:

??? example “Example configuration for a new accelerometer provider VEGA”
```yaml hl_lines=”12 13 14 15 16”
PHONE_ACCELEROMETER:
CONTAINER: accelerometer
PROVIDERS:
RAPIDS: # this is a feature provider
COMPUTE: False
…

        PANDA: # this is another feature provider
            COMPUTE: False
            ...

        VEGA: # this is our new feature provider
            COMPUTE: False
            FEATURES: ["feature1", "feature2", "feature3"]
            MY_PARAMTER: a_string
            SRC_SCRIPT: src/features/phone_accelerometer/vega/main.py
        
```


| Key | Description
|—|—|
|[COMPUTE]| Flag to activate/deactivate your provider
|[FEATURES]| List of features your provider supports. Your provider code should only return the features on this list
|[MY_PARAMTER]| An arbitrary parameter that our example provider VEGA needs. This can be a boolean, integer, float, string, or an array of any of such types.
|[SRC_SCRIPT]| The relative path from RAPIDS’ root folder to a script that computes the features for this provider. It can be implemented in R or Python.

Create a feature provider script

Create your feature Python or R script called main.py or main.R in the correct folder, src/feature/[sensorname]/[providername]/. RAPIDS automatically loads and executes it based on the config key [SRC_SCRIPT] you added in the last step. For our example, this script is:

src/feature/phone_accelerometer/vega/main.py

Implement your feature extraction code

Every feature script (main.[py|R]) needs a [providername]_features function with specific parameters. RAPIDS calls this function with the sensor data ready to process and with other functions and arguments you will need.

=== “Python function”
python def [providername]_features(sensor_data_files, time_segment, provider, filter_data_by_segment, *args, **kwargs): # empty for now return(your_features_df)

=== “R function”
r [providername]_features <- function(sensor_data, time_segment, provider){ # empty for now return(your_features_df) }

| Parameter | Description
|—|—|
|sensor_data_files| Path to the CSV file containing the data of a single participant. This data has been cleaned and preprocessed. Your function will be automatically called for each participant in your study (in the [PIDS] array in config.yaml)
|time_segment| The label of the time segment that should be processed.
|provider| The parameters you configured for your provider in config.yaml will be available in this variable as a dictionary in Python or a list in R. In our example, this dictionary contains {MY_PARAMETER:"a_string"}
|filter_data_by_segment| Python only. A function that you will use to filter your data. In R, this function is already available in the environment.
|*args| Python only. Not used for now
|**kwargs| Python only. Not used for now

The next step is to implement the code that computes your behavioral features in your provider script’s function. As with any other script, this function can call other auxiliary methods, but in general terms, it should have three stages:

??? info “1. Read a participant’s data by loading the CSV data stored in the file pointed by sensor_data_files”
python acc_data = pd.read_csv(sensor_data_files["sensor_data"])

Note that the phone's battery, screen, and activity recognition data are given as episodes instead of event rows (for example, start and end timestamps of the periods the phone screen was on)

??? info “2. Filter your data to process only those rows that belong to time_segment”

This step is only one line of code, but keep reading to understand why we need it.
```python
acc_data = filter_data_by_segment(acc_data, time_segment)
```

You should use the `filter_data_by_segment()` function to process and group those rows that belong to each of the [time segments RAPIDS could be configured with](../../setup/configuration/#time-segments).

Let's understand the `filter_data_by_segment()` function with an example. A RAPIDS user can extract features on any arbitrary [time segment](../../setup/configuration/#time-segments). A time segment is a period that has a label and one or more instances. For example, the user (or you) could have requested features on a daily, weekly, and weekend basis for `p01`. The labels are arbitrary, and the instances depend on the days a participant was monitored for:

 - the daily segment could be named `my_days` and if `p01` was monitored for 14 days, it would have 14 instances
 - the weekly segment could be named `my_weeks` and if `p01` was monitored for 14 days, it would have 2 instances.
 - the weekend segment could be named `my_weekends` and if `p01` was monitored for 14 days, it would have 2 instances.

For this example, RAPIDS will call your provider function three times for `p01`, once where `time_segment` is `my_days`, once where `time_segment` is `my_weeks`, and once where `time_segment` is `my_weekends`. In this example, not every row in `p01`'s data needs to take part in the feature computation for either segment **and** the rows need to be grouped differently.

Thus `filter_data_by_segment()` comes in handy, it will return a data frame that contains the rows that were logged during a time segment plus an extra column called `local_segment`. This new column will have as many unique values as time segment instances exist (14, 2, and 2 for our `p01`'s `my_days`, `my_weeks`, and `my_weekends` examples). After filtering, **you should group the data frame by this column and compute any desired features**, for example:

```python
acc_features["maxmagnitude"] = acc_data.groupby(["local_segment"])["magnitude"].max()
```

The reason RAPIDS does not filter the participant's data set for you is because your code might need to compute something based on a participant's complete dataset before computing their features. For example, you might want to identify the number that called a participant the most throughout the study before computing a feature with the number of calls the participant received from that number.

??? info “3. Return a data frame with your features”
After filtering, grouping your data, and computing your features, your provider function should return a data frame that has:

- One row per time segment instance (e.g., 14 our `p01`'s `my_days` example)
- The `local_segment` column added by `filter_data_by_segment()`
- One column per feature. The name of your features should only contain letters or numbers (`feature1`) by convention. RAPIDS automatically adds the correct sensor and provider prefix; in our example, this prefix is `phone_accelerometr_vega_`.

??? example “PHONE_ACCELEROMETER Provider Example”
For your reference, this our own provider (RAPIDS) for PHONE_ACCELEROMETER that computes five acceleration features

```python

--8<---- "src/features/phone_accelerometer/rapids/main.py"

```


New Features for Non-Existing Sensors

If you want to add features for a device or a sensor that we do not support at the moment (those that do not appear in the "Existing Sensors" list above), open a new discussion [https://github.com/carissalow/rapids/discussions] in Github and we can add the necessary code so you can follow the instructions above.

Empatica Accelerometer

Sensor parameters description for [EMPATICA_ACCELEROMETER]:

|Key | Description |
|—————-|———–
|[CONTAINER]| Name of the CSV file containing accelerometer data that is compressed inside an Empatica zip file. Since these zip files are created automatically [https://support.empatica.com/hc/en-us/articles/201608896-Data-export-and-formatting-from-E4-connect-] by Empatica, there is no need to change the value of this attribute.

DBDP provider

!!! info “Available time segments and platforms”
- Available for all time segments

!!! info “File Sequence”
bash - data/raw/{pid}/empatica_accelerometer_raw.csv - data/raw/{pid}/empatica_accelerometer_with_datetime.csv - data/interim/{pid}/empatica_accelerometer_features/empatica_accelerometer_{language}_{provider_key}.csv - data/processed/features/{pid}/empatica_accelerometer.csv

Parameters description for [EMPATICA_ACCELEROMETER][PROVIDERS][DBDP]:

|Key | Description |
|—————-|———–
|[COMPUTE]| Set to True to extract EMPATICA_ACCELEROMETER features from the DBDP provider|
|[FEATURES] | Features to be computed, see table below

Features description for [EMPATICA_ACCELEROMETER][PROVIDERS][RAPDBDPIDS]:

|Feature |Units |Description|
|————————– |———- |—————————|
|maxmagnitude |m/s^2^ |The maximum magnitude of acceleration ($|acceleration| = \sqrt{x^2 + y^2 + z^2}$).
|minmagnitude |m/s^2^ |The minimum magnitude of acceleration.
|avgmagnitude |m/s^2^ |The average magnitude of acceleration.
|medianmagnitude |m/s^2^ |The median magnitude of acceleration.
|stdmagnitude |m/s^2^ |The standard deviation of acceleration.

!!! note “Assumptions/Observations”
1. Analyzing accelerometer data is a memory intensive task. If RAPIDS crashes is likely because the accelerometer dataset for a participant is too big to fit in memory. We are considering different alternatives to overcome this problem, if this is something you need, get in touch and we can discuss how to implement it.

Empatica Blood Volume Pulse

Sensor parameters description for [EMPATICA_BLOOD_VOLUME_PULSE]:

|Key | Description |
|—————-|———–
|[CONTAINER]| Name of the CSV file containing blood volume pulse data that is compressed inside an Empatica zip file. Since these zip files are created automatically [https://support.empatica.com/hc/en-us/articles/201608896-Data-export-and-formatting-from-E4-connect-] by Empatica, there is no need to change the value of this attribute.

DBDP provider

!!! info “Available time segments and platforms”
- Available for all time segments

!!! info “File Sequence”
bash - data/raw/{pid}/empatica_blood_volume_pulse_raw.csv - data/raw/{pid}/empatica_blood_volume_pulse_with_datetime.csv - data/interim/{pid}/empatica_blood_volume_pulse_features/empatica_blood_volume_pulse_{language}_{provider_key}.csv - data/processed/features/{pid}/empatica_blood_volume_pulse.csv

Parameters description for [EMPATICA_BLOOD_VOLUME_PULSE][PROVIDERS][DBDP]:

|Key | Description |
|—————-|———–
|[COMPUTE] | Set to True to extract EMPATICA_BLOOD_VOLUME_PULSE features from the DBDP provider|
|[FEATURES] | Features to be computed from blood volume pulse intraday data, see table below |

Features description for [EMPATICA_BLOOD_VOLUME_PULSE][PROVIDERS][DBDP]:

|Feature |Units |Description|
|————————– |————– |—————————|
|maxbvp |- |The maximum blood volume pulse during a time segment.
|minbvp |- |The minimum blood volume pulse during a time segment.
|avgbvp |- |The average blood volume pulse during a time segment.
|medianbvp |- |The median of blood volume pulse during a time segment.
|modebvp |- |The mode of blood volume pulse during a time segment.
|stdbvp |- |The standard deviation of blood volume pulse during a time segment.
|diffmaxmodebvp |- |The difference between the maximum and mode blood volume pulse during a time segment.
|diffminmodebvp |- |The difference between the mode and minimum blood volume pulse during a time segment.
|entropybvp |nats |Shannon’s entropy measurement based on blood volume pulse during a time segment.

!!! note “Assumptions/Observations”
For more information about BVP read this [https://support.empatica.com/hc/en-us/articles/360029719792-E4-data-BVP-expected-signal].

Empatica Electrodermal Activity

Sensor parameters description for [EMPATICA_ELECTRODERMAL_ACTIVITY]:

|Key | Description |
|—————-|———–
|[CONTAINER]| Name of the CSV file containing electrodermal activity data that is compressed inside an Empatica zip file. Since these zip files are created automatically [https://support.empatica.com/hc/en-us/articles/201608896-Data-export-and-formatting-from-E4-connect-] by Empatica, there is no need to change the value of this attribute.

DBDP provider

!!! info “Available time segments and platforms”
- Available for all time segments

!!! info “File Sequence”
bash - data/raw/{pid}/empatica_electrodermal_activity_raw.csv - data/raw/{pid}/empatica_electrodermal_activity_with_datetime.csv - data/interim/{pid}/empatica_electrodermal_activity_features/empatica_electrodermal activity_{language}_{provider_key}.csv - data/processed/features/{pid}/empatica_electrodermal_activity.csv

Parameters description for [EMPATICA_ELECTRODERMAL_ACTIVITY][PROVIDERS][DBDP]:

|Key | Description |
|—————-|———–
|[COMPUTE] | Set to True to extract EMPATICA_ELECTRODERMAL_ACTIVITY features from the DBDP provider|
|[FEATURES] | Features to be computed from electrodermal activity intraday data, see table below |

Features description for [EMPATICA_ELECTRODERMAL ACTIVITY][PROVIDERS][DBDP]:

|Feature |Units |Description|
|————————– |————– |—————————|
|maxeda |microsiemens |The maximum electrical conductance during a time segment.
|mineda |microsiemens |The minimum electrical conductance during a time segment.
|avgeda |microsiemens |The average electrical conductance during a time segment.
|medianeda |microsiemens |The median of electrical conductance during a time segment.
|modeeda |microsiemens |The mode of electrical conductance during a time segment.
|stdeda |microsiemens |The standard deviation of electrical conductance during a time segment.
|diffmaxmodeeda |microsiemens |The difference between the maximum and mode electrical conductance during a time segment.
|diffminmodeeda |microsiemens |The difference between the mode and minimum electrical conductance during a time segment.
|entropyeda |nats |Shannon’s entropy measurement based on electrical conductance during a time segment.

!!! note “Assumptions/Observations”
None

Empatica Heart Rate

Sensor parameters description for [EMPATICA_HEARTRATE]:

|Key | Description |
|—————-|———–
|[CONTAINER]| Name of the CSV file containing heart rate data that is compressed inside an Empatica zip file. Since these zip files are created automatically [https://support.empatica.com/hc/en-us/articles/201608896-Data-export-and-formatting-from-E4-connect-] by Empatica, there is no need to change the value of this attribute.

DBDP provider

!!! info “Available time segments and platforms”
- Available for all time segments

!!! info “File Sequence”
bash - data/raw/{pid}/empatica_heartrate_raw.csv - data/raw/{pid}/empatica_heartrate_with_datetime.csv - data/interim/{pid}/empatica_heartrate_features/empatica_heartrate_{language}_{provider_key}.csv - data/processed/features/{pid}/empatica_heartrate.csv

Parameters description for [EMPATICA_HEARTRATE][PROVIDERS][DBDP]:

|Key | Description |
|—————-|———–
|[COMPUTE] | Set to True to extract EMPATICA_HEARTRATE features from the DBDP provider|
|[FEATURES] | Features to be computed from heart rate intraday data, see table below |

Features description for [EMPATICA_HEARTRATE][PROVIDERS][DBDP]:

|Feature |Units |Description|
|————————– |————– |—————————|
|maxhr |beats |The maximum heart rate during a time segment.
|minhr |beats |The minimum heart rate during a time segment.
|avghr |beats |The average heart rate during a time segment.
|medianhr |beats |The median of heart rate during a time segment.
|modehr |beats |The mode of heart rate during a time segment.
|stdhr |beats |The standard deviation of heart rate during a time segment.
|diffmaxmodehr |beats |The difference between the maximum and mode heart rate during a time segment.
|diffminmodehr |beats |The difference between the mode and minimum heart rate during a time segment.
|entropyhr |nats |Shannon’s entropy measurement based on heart rate during a time segment.

!!! note “Assumptions/Observations”
We extract the previous features based on the average heart rate values computed in 10-second windows [https://support.empatica.com/hc/en-us/articles/360029469772-E4-data-HR-csv-explanation].

Empatica Inter Beat Interval

Sensor parameters description for [EMPATICA_INTER_BEAT_INTERVAL]:

|Key | Description |
|—————-|———–
|[CONTAINER]| Name of the CSV file containing inter beat interval data that is compressed inside an Empatica zip file. Since these zip files are created automatically [https://support.empatica.com/hc/en-us/articles/201608896-Data-export-and-formatting-from-E4-connect-] by Empatica, there is no need to change the value of this attribute.

DBDP provider

!!! info “Available time segments and platforms”
- Available for all time segments

!!! info “File Sequence”
bash - data/raw/{pid}/empatica_inter_beat_interval_raw.csv - data/raw/{pid}/empatica_inter_beat_interval_with_datetime.csv - data/interim/{pid}/empatica_inter_beat_interval_features/empatica_inter_beat_interval_{language}_{provider_key}.csv - data/processed/features/{pid}/empatica_inter_beat_interval.csv

Parameters description for [EMPATICA_INTER_BEAT_INTERVAL][PROVIDERS][DBDP]:

|Key | Description |
|—————-|———–
|[COMPUTE] | Set to True to extract EMPATICA_INTER_BEAT_INTERVAL features from the DBDP provider|
|[FEATURES] | Features to be computed from inter beat interval intraday data, see table below |

Features description for [EMPATICA_INTER_BEAT_INTERVAL][PROVIDERS][DBDP]:

|Feature |Units |Description|
|————————– |————– |—————————|
|maxibi |seconds |The maximum inter beat interval during a time segment.
|minibi |seconds |The minimum inter beat interval during a time segment.
|avgibi |seconds |The average inter beat interval during a time segment.
|medianibi |seconds |The median of inter beat interval during a time segment.
|modeibi |seconds |The mode of inter beat interval during a time segment.
|stdibi |seconds |The standard deviation of inter beat interval during a time segment.
|diffmaxmodeibi |seconds |The difference between the maximum and mode inter beat interval during a time segment.
|diffminmodeibi |seconds |The difference between the mode and minimum inter beat interval during a time segment.
|entropyibi |nats |Shannon’s entropy measurement based on inter beat interval during a time segment.

!!! note “Assumptions/Observations”
For more information about IBI read this [https://support.empatica.com/hc/en-us/articles/360030058011-E4-data-IBI-expected-signal].

Empatica Tags

Sensor parameters description for [EMPATICA_TAGS]:

|Key | Description |
|—————-|———–
|[CONTAINER]| Name of the CSV file containing tags data that is compressed inside an Empatica zip file. Since these zip files are created automatically [https://support.empatica.com/hc/en-us/articles/201608896-Data-export-and-formatting-from-E4-connect-] by Empatica, there is no need to change the value of this attribute.

!!! Note
- No feature providers have been implemented for this sensor yet, however you can implement your own features.
- To know more about tags read this [https://support.empatica.com/hc/en-us/articles/204578699-Event-Marking-with-the-E4-wristband].

Empatica Temperature

Sensor parameters description for [EMPATICA_TEMPERATURE]:

|Key | Description |
|—————-|———–
|[CONTAINER]| Name of the CSV file containing temperature data that is compressed inside an Empatica zip file. Since these zip files are created automatically [https://support.empatica.com/hc/en-us/articles/201608896-Data-export-and-formatting-from-E4-connect-] by Empatica, there is no need to change the value of this attribute.

DBDP provider

!!! info “Available time segments and platforms”
- Available for all time segments

!!! info “File Sequence”
bash - data/raw/{pid}/empatica_temperature_raw.csv - data/raw/{pid}/empatica_temperature_with_datetime.csv - data/interim/{pid}/empatica_temperature_features/empatica_temperature_{language}_{provider_key}.csv - data/processed/features/{pid}/empatica_temperature.csv

Parameters description for [EMPATICA_TEMPERATURE][PROVIDERS][DBDP]:

|Key | Description |
|—————-|———–
|[COMPUTE] | Set to True to extract EMPATICA_TEMPERATURE features from the DBDP provider|
|[FEATURES] | Features to be computed from temperature intraday data, see table below |

Features description for [EMPATICA_TEMPERATURE][PROVIDERS][DBDP]:

|Feature |Units |Description|
|————————– |————– |—————————|
|maxtemp |degrees C |The maximum temperature during a time segment.
|mintemp |degrees C |The minimum temperature during a time segment.
|avgtemp |degrees C |The average temperature during a time segment.
|mediantemp |degrees C |The median of temperature during a time segment.
|modetemp |degrees C |The mode of temperature during a time segment.
|stdtemp |degrees C |The standard deviation of temperature during a time segment.
|diffmaxmodetemp |degrees C |The difference between the maximum and mode temperature during a time segment.
|diffminmodetemp |degrees C |The difference between the mode and minimum temperature during a time segment.
|entropytemp |nats |Shannon’s entropy measurement based on temperature during a time segment.

!!! note “Assumptions/Observations”
None

Behavioral Features Introduction

A behavioral feature is a metric computed from raw sensor data quantifying the behavior of a participant. For example, the time spent at home computed based on location data. These are also known as digital biomarkers.

RAPIDS’ config.yaml has a section for each supported device/sensor (e.g., PHONE_ACCELEROMETER, FITBIT_STEPS, EMPATICA_HEARTRATE). These sections follow a similar structure, and they can have one or more feature PROVIDERS, that compute one or more behavioral features. You will modify the parameters of these PROVIDERS to obtain features from different mobile sensors. We’ll use PHONE_ACCELEROMETER as an example to explain this further.

!!! hint
- We recommend reading this page if you are using RAPIDS for the first time
- All computed sensor features are stored under /data/processed/features on files per sensor, per participant and per study (all participants).
- Every time you change any sensor parameters, provider parameters or provider features, all the necessary files will be updated as soon as you execute RAPIDS.
- In short, to extract features offered by a provider, you need to set its [COMPUTE] flag to TRUE, configure any of its parameters, and execute RAPIDS.

Explaining the config.yaml sensor sections with an example

Each sensor section follows the same structure. Click on the numbered markers to know more.

PHONE_ACCELEROMETER: # (1)

 CONTAINER: accelerometer # (2)

 PROVIDERS: # (3)
 RAPIDS:
 COMPUTE: False # (4)
 FEATURES: ["maxmagnitude", "minmagnitude", "avgmagnitude", "medianmagnitude", "stdmagnitude"]

 SRC_SCRIPT: src/features/phone_accelerometer/rapids/main.py

 PANDA:
 COMPUTE: False
 VALID_SENSED_MINUTES: False
 FEATURES: # (5)
 exertional_activity_episode: ["sumduration", "maxduration", "minduration", "avgduration", "medianduration", "stdduration"]
 nonexertional_activity_episode: ["sumduration", "maxduration", "minduration", "avgduration", "medianduration", "stdduration"]

 # (6)
 SRC_SCRIPT: src/features/phone_accelerometer/panda/main.py

–8<— “docs/snippets/feature_introduction_example.md”

These are the descriptions of each marker for accessibility:

–8<— “docs/snippets/feature_introduction_example.md”

Fitbit Calories Intraday

Sensor parameters description for [FITBIT_CALORIES_INTRADAY]:

|Key | Description |
|—————-|———–
|[CONTAINER]| Container where your calories intraday data is stored, depending on the data stream you are using this can be a database table, a CSV file, etc. |

RAPIDS provider

!!! info “Available time segments”
- Available for all time segments

!!! info “File Sequence”
bash - data/raw/{pid}/fitbit_calories_intraday_raw.csv - data/raw/{pid}/fitbit_calories_intraday_with_datetime.csv - data/interim/{pid}/fitbit_calories_intraday_features/fitbit_calories_intraday_{language}_{provider_key}.csv - data/processed/features/{pid}/fitbit_calories_intraday.csv

Parameters description for [FITBIT_CALORIES_INTRADAY][PROVIDERS][RAPIDS]:

|Key | Description |
|—————-|———–
[COMPUTE]	Set to True to extract FITBIT_CALORIES_INTRADAY features from the RAPIDS provider
[FEATURES]	Features to be computed from calories intraday data, see table below
[EPISODE_TYPE]	RAPIDS will compute features for any episodes in this list. There are seven types of episodes defined as consecutive appearances of a label. Four are based on the activity level labels provided by Fitbit: sedentary, lightly active, fairly active, and very active. One is defined by RAPIDS as moderate to vigorous physical activity MVPA episodes that are based on all fairly active, and very active labels. Two are defined by the user based on a threshold that divides low or high MET (metabolic equivalent) episodes.
EPISODE_TIME_THRESHOLD	Any consecutive rows of the same [EPISODE_TYPE] will be considered a single episode if the time difference between them is less or equal than this threshold in minutes
[EPISODE_MET_THRESHOLD]	Any 1-minute calorie data chunk with a MET value equal or higher than this threshold will be considered a high MET episode and low MET otherwise. The default value is 3
[EPISODE_MVPA_CATEGORIES]	The Fitbit level labels that are considered part of a moderate to vigorous physical activity episode. One or more of sedentary, lightly active, fairly active, and very active. The default are fairly active and very active
[EPISODE_REFERENCE_TIME]	Reference time for the start/end time features. MIDNIGHT sets the reference time to 00:00 of each day, START_OF_THE_SEGMENT sets the reference time to the start of the time segment (useful when a segment is shorter than a day or spans multiple days)

Features description for [FITBIT_CALORIES_INTRADAY][PROVIDERS][RAPIDS]:

|Feature |Units |Description|
|————————– |———- |—————————|
|starttimefirstepisodeEPISODE_TYPE |minutes |Start time of the first episode of type [EPISODE_TYPE]
|endtimefirstepisodeEPISODE_TYPE |minutes |End time of the first episode of type [EPISODE_TYPE]
|starttimelastepisodeEPISODE_TYPE |minutes |Start time of the last episode of type [EPISODE_TYPE]
|endtimelastepisodeEPISODE_TYPE |minutes |End time of the last episode of type [EPISODE_TYPE]
|starttimelongestepisodeEPISODE_TYPE |minutes |Start time of the longest episode of type [EPISODE_TYPE]
|endtimelongestepisodeEPISODE_TYPE |minutes |End time of the longest episode of type [EPISODE_TYPE]
|countepisodeEPISODE_TYPE |episodes |The number of episodes of type [EPISODE_TYPE]
|sumdurationepisodeEPISODE_TYPE |minutes |The sum of the duration of episodes of type [EPISODE_TYPE]
|avgdurationepisodeEPISODE_TYPE |minutes |The average of the duration of episodes of type [EPISODE_TYPE]
|maxdurationepisodeEPISODE_TYPE |minutes |The maximum of the duration of episodes of type [EPISODE_TYPE]
|mindurationepisodeEPISODE_TYPE |minutes |The minimum of the duration of episodes of type [EPISODE_TYPE]
|stddurationepisodeEPISODE_TYPE |minutes |The standard deviation of the duration of episodes of type [EPISODE_TYPE]
|summetEPISODE_TYPE |METs |The sum of all METs during episodes of type [EPISODE_TYPE]
|avgmetEPISODE_TYPE |METs |The average of all METs during episodes of type [EPISODE_TYPE]
|maxmetEPISODE_TYPE |METs |The maximum of all METs during episodes of type [EPISODE_TYPE]
|minmetEPISODE_TYPE |METs |The minimum of all METs during episodes of type [EPISODE_TYPE]
|stdmetEPISODE_TYPE |METs |The standard deviation of all METs during episodes of type [EPISODE_TYPE]
|sumcaloriesEPISODE_TYPE |calories |The sum of all calories during episodes of type [EPISODE_TYPE]
|avgcaloriesEPISODE_TYPE |calories |The average of all calories during episodes of type [EPISODE_TYPE]
|maxcaloriesEPISODE_TYPE |calories |The maximum of all calories during episodes of type [EPISODE_TYPE]
|mincaloriesEPISODE_TYPE |calories |The minimum of all calories during episodes of type [EPISODE_TYPE]
|stdcaloriesEPISODE_TYPE |calories |The standard deviation of all calories during episodes of type [EPISODE_TYPE]

!!! note “Assumptions/Observations”
- These features are based on intraday calories data that is usually obtained in 1-minute chunks from Fitbit’s API.
- The MET value returned by Fitbit is divided by 10
- Take into account that the intraday data returned by Fitbit [https://dev.fitbit.com/build/reference/web-api/activity/#get-activity-intraday-time-series] can contain time series for calories burned inclusive of BMR, tracked activity, and manually logged activities.

Fitbit Data Yield

We use Fitbit heart rate intraday data to extract data yield features. Fitbit data yield features can be used to remove rows (time segments) that do not contain enough Fitbit data. You should decide what is your “enough” threshold depending on the time a participant was supposed to be wearing their Fitbit, the length of your study, and the rates of missing data that your analysis could handle.

!!! hint “Why is Fitbit data yield important?”
Imagine that you want to extract FITBIT_STEPS_SUMMARY features on daily segments (00:00 to 23:59). Let’s say that on day 1 the Fitbit logged 6k as the total step count and the heart rate sensor logged 24 hours of data and on day 2 the Fitbit logged 101 as the total step count and the heart rate sensor logged 2 hours of data. It’s very likely that on day 2 you walked during the other 22 hours so including this day in your analysis could bias your results.
Sensor parameters description for [FITBIT_DATA_YIELD]:

|Key | Description |
|—————-|———–
|[SENSORS]| The Fitbit sensor we considered for calculating the Fitbit data yield features. We only support FITBIT_HEARTRATE_INTRADAY since sleep data is commonly collected only overnight, and step counts are 0 even when not wearing the Fitbit device.

RAPIDS provider

Before explaining the data yield features, let’s define the following relevant concepts:

	A valid minute is any 60 second window when Fitbit heart rate intraday sensor logged at least 1 row of data

	A valid hour is any 60 minute window with at least X valid minutes. The X or threshold is given by [MINUTE_RATIO_THRESHOLD_FOR_VALID_YIELDED_HOURS]

!!! info “Available time segments and platforms”
- Available for all time segments

!!! info “File Sequence”
bash - data/raw/{pid}/fitbit_heartrate_intraday_raw.csv - data/raw/{pid}/fitbit_heartrate_intraday_with_datetime.csv - data/interim/{pid}/fitbit_data_yield_features/fitbit_data_yield_{language}_{provider_key}.csv - data/processed/features/{pid}/fitbit_data_yield.csv

Parameters description for [FITBIT_DATA_YIELD][PROVIDERS][RAPIDS]:

|Key | Description |
|—————-|———–
|[COMPUTE]| Set to True to extract FITBIT_DATA_YIELD features from the RAPIDS provider|
|[FEATURES] | Features to be computed, see table below
|[MINUTE_RATIO_THRESHOLD_FOR_VALID_YIELDED_HOURS] | The proportion [0.0 ,1.0] of valid minutes in a 60-minute window necessary to flag that window as valid.

Features description for [FITBIT_DATA_YIELD][PROVIDERS][RAPIDS]:

|Feature |Units |Description|
|————————– |———- |—————————|
|ratiovalidyieldedminutes |- | The ratio between the number of valid minutes and the duration in minutes of a time segment.
|ratiovalidyieldedhours |- | The ratio between the number of valid hours and the duration in hours of a time segment. If the time segment is shorter than 1 hour this feature will always be 1.

!!! note “Assumptions/Observations”

1. We recommend using `ratiovalidyieldedminutes` on time segments that are shorter than two or three hours and `ratiovalidyieldedhours` for longer segments. This is because relying on yielded minutes only can be misleading when a big chunk of those missing minutes are clustered together.

 For example, let's assume we are working with a 24-hour time segment that is missing 12 hours of data. Two extreme cases can occur:

 <ol type="A">
 the 12 missing hours are from the beginning of the segment or
 30 minutes could be missing from every hour (24 * 30 minutes = 12 hours).

 `ratiovalidyieldedminutes` would be 0.5 for both `a` and `b` (hinting the missing circumstances are similar). However, `ratiovalidyieldedhours` would be 0.5 for `a` and 1.0 for `b` if `[MINUTE_RATIO_THRESHOLD_FOR_VALID_YIELDED_HOURS]` is between [0.0 and 0.49] (hinting that the missing circumstances might be more favorable for `b`. In other words, sensed data for `b` is more evenly spread compared to `a`.

2. We assume your Fitbit intraday data was sampled (requested form the Fitbit API) at 1 minute intervals, if the interval is longer, for example 15 minutes, you need to take into account that valid minutes and valid hours ratios are going to be small (for example you would have at most 4 “minutes” of data per hour because you would have four 15-minute windows) and so you should adjust your thresholds to include and exclude rows accordingly. If you are in this situation, get in touch with us, we could implement this use case but we are not sure there is enough demand for it at the moment since you can control the sampling rate of the data you request from Fitbit API.

Fitbit Heart Rate Intraday

Sensor parameters description for [FITBIT_HEARTRATE_INTRADAY]:

|Key | Description |
|—————-|———–
|[CONTAINER]| Container where your heart rate intraday data is stored, depending on the data stream you are using this can be a database table, a CSV file, etc. |

RAPIDS provider

!!! info “Available time segments”
- Available for all time segments

!!! info “File Sequence”
bash - data/raw/{pid}/fitbit_heartrate_intraday_raw.csv - data/raw/{pid}/fitbit_heartrate_intraday_with_datetime.csv - data/interim/{pid}/fitbit_heartrate_intraday_features/fitbit_heartrate_intraday_{language}_{provider_key}.csv - data/processed/features/{pid}/fitbit_heartrate_intraday.csv

Parameters description for [FITBIT_HEARTRATE_INTRADAY][PROVIDERS][RAPIDS]:

|Key | Description |
|—————-|———–
|[COMPUTE] | Set to True to extract FITBIT_HEARTRATE_INTRADAY features from the RAPIDS provider|
|[FEATURES] | Features to be computed from heart rate intraday data, see table below |

Features description for [FITBIT_HEARTRATE_INTRADAY][PROVIDERS][RAPIDS]:

|Feature |Units |Description|
|————————– |————– |—————————|
|maxhr |beats/mins |The maximum heart rate during a time segment.
|minhr |beats/mins |The minimum heart rate during a time segment.
|avghr |beats/mins |The average heart rate during a time segment.
|medianhr |beats/mins |The median of heart rate during a time segment.
|modehr |beats/mins |The mode of heart rate during a time segment.
|stdhr |beats/mins |The standard deviation of heart rate during a time segment.
|diffmaxmodehr |beats/mins |The difference between the maximum and mode heart rate during a time segment.
|diffminmodehr |beats/mins |The difference between the mode and minimum heart rate during a time segment.
|entropyhr |nats |Shannon’s entropy measurement based on heart rate during a time segment.
|minutesonZONE |minutes |Number of minutes the user’s heart rate fell within each heartrate_zone during a time segment.

!!! note “Assumptions/Observations”

1. There are four heart rate zones (ZONE): ``outofrange``, ``fatburn``, ``cardio``, and ``peak``. Please refer to [Fitbit documentation](https://help.fitbit.com/articles/en_US/Help_article/1565.htm) for more information about the way they are computed.

Fitbit Heart Rate Summary

Sensor parameters description for [FITBIT_HEARTRATE_SUMMARY]:

|Key | Description |
|—————-|———–
|[CONTAINER]| Container where your heart rate summary data is stored, depending on the data stream you are using this can be a database table, a CSV file, etc. |

RAPIDS provider

!!! info “Available time segments”
- Only available for segments that span 1 or more complete days (e.g. Jan 1st 00:00 to Jan 3rd 23:59)

!!! info “File Sequence”
bash - data/raw/{pid}/fitbit_heartrate_summary_raw.csv - data/raw/{pid}/fitbit_heartrate_summary_with_datetime.csv - data/interim/{pid}/fitbit_heartrate_summary_features/fitbit_heartrate_summary_{language}_{provider_key}.csv - data/processed/features/{pid}/fitbit_heartrate_summary.csv

Parameters description for [FITBIT_HEARTRATE_SUMMARY][PROVIDERS][RAPIDS]:

|Key | Description |
|—————-|———–
|[COMPUTE] | Set to True to extract FITBIT_HEARTRATE_SUMMARY features from the RAPIDS provider|
|[FEATURES] | Features to be computed from heart rate summary data, see table below |

Features description for [FITBIT_HEARTRATE_SUMMARY][PROVIDERS][RAPIDS]:

|Feature |Units |Description|
|————————– |———- |—————————|
|maxrestinghr |beats/mins |The maximum daily resting heart rate during a time segment.
|minrestinghr |beats/mins |The minimum daily resting heart rate during a time segment.
|avgrestinghr |beats/mins |The average daily resting heart rate during a time segment.
|medianrestinghr |beats/mins |The median of daily resting heart rate during a time segment.
|moderestinghr |beats/mins |The mode of daily resting heart rate during a time segment.
|stdrestinghr |beats/mins |The standard deviation of daily resting heart rate during a time segment.
|diffmaxmoderestinghr |beats/mins |The difference between the maximum and mode daily resting heart rate during a time segment.
|diffminmoderestinghr |beats/mins |The difference between the mode and minimum daily resting heart rate during a time segment.
|entropyrestinghr |nats |Shannon’s entropy measurement based on daily resting heart rate during a time segment.
|sumcaloriesZONE |cals |The total daily calories burned within heartrate_zone during a time segment.
|maxcaloriesZONE |cals |The maximum daily calories burned within heartrate_zone during a time segment.
|mincaloriesZONE |cals |The minimum daily calories burned within heartrate_zone during a time segment.
|avgcaloriesZONE |cals |The average daily calories burned within heartrate_zone during a time segment.
|mediancaloriesZONE |cals |The median of daily calories burned within heartrate_zone during a time segment.
|stdcaloriesZONE |cals |The standard deviation of daily calories burned within heartrate_zone during a time segment.
|entropycaloriesZONE |nats |Shannon’s entropy measurement based on daily calories burned within heartrate_zone during a time segment.

!!! note “Assumptions/Observations”

1. There are four heart rate zones (ZONE): ``outofrange``, ``fatburn``, ``cardio``, and ``peak``. Please refer to [Fitbit documentation](https://help.fitbit.com/articles/en_US/Help_article/1565.htm) for more information about the way they are computed.

2. Calories' accuracy depends on the users’ Fitbit profile (weight, height, etc.).

Fitbit Sleep Intraday

Sensor parameters description for [FITBIT_SLEEP_INTRADAY]:

|Key | Description |
|—————-|———–
|[CONTAINER]| Container where your sleep intraday data is stored, depending on the data stream you are using this can be a database table, a CSV file, etc. |

RAPIDS provider

!!! hint “Understanding RAPIDS features”
This diagram will help you understand how sleep episodes are chunked and grouped within time segments for the RAPIDS provider.

!!! info “Available time segments”
- Available for all time segments

!!! info “File Sequence”
bash - data/raw/{pid}/fitbit_sleep_intraday_raw.csv - data/raw/{pid}/fitbit_sleep_intraday_with_datetime.csv - data/interim/{pid}/fitbit_sleep_intraday_episodes.csv - data/interim/{pid}/fitbit_sleep_intraday_episodes_resampled.csv - data/interim/{pid}/fitbit_sleep_intraday_episodes_resampled_with_datetime.csv - data/interim/{pid}/fitbit_sleep_intraday_features/fitbit_sleep_intraday_{language}_{provider_key}.csv - data/processed/features/{pid}/fitbit_sleep_intraday.csv

Parameters description for [FITBIT_SLEEP_INTRADAY][PROVIDERS][RAPIDS]:

|Key | Description |
|—————-|———–
|[COMPUTE] | Set to True to extract FITBIT_SLEEP_INTRADAY features from the RAPIDS provider|
|[FEATURES] | Features to be computed from sleep intraday data, see table below |
|[SLEEP_LEVELS] | Fitbit’s sleep API Version 1 only provides CLASSIC records. However, Version 1.2 provides 2 types of records: CLASSIC and STAGES. STAGES is only available in devices with a heart rate sensor and even those devices will fail to report it if the battery is low or the device is not tight enough. While CLASSIC contains 3 sleep levels (awake, restless, and asleep), STAGES contains 4 sleep levels (wake, deep, light, rem). To make it consistent, RAPIDS groups them into 2 UNIFIED sleep levels: awake (CLASSIC: awake and restless; STAGES: wake) and asleep (CLASSIC: asleep; STAGES: deep, light, and rem). In this section, there is a boolean flag named INCLUDE_ALL_GROUPS that if set to TRUE, computes LEVELS_AND_TYPES features grouping all levels together in a single all category.
|[SLEEP_TYPES] | Types of sleep to be included in the feature extraction computation. There are three sleep types: main, nap, and all. The all type means both main sleep and naps are considered.

Features description for [FITBIT_SLEEP_INTRADAY][PROVIDERS][RAPIDS][LEVELS_AND_TYPES]:

|Feature |Units |Description |
|——————————- |————– |————————————————————-|
|countepisode[LEVEL][TYPE] |episodes |Number of [LEVEL][TYPE]sleep episodes. [LEVEL]is one of [SLEEP_LEVELS] (e.g. awake-classic or rem-stages) and [TYPE] is one of [SLEEP_TYPES] (e.g. main). [LEVEL] can also be all when INCLUDE_ALL_GROUPS is True, which ignores the levels and groups by sleep types.
|sumduration[LEVEL][TYPE] |minutes |Total duration of all [LEVEL][TYPE]sleep episodes. [LEVEL]is one of [SLEEP_LEVELS] (e.g. awake-classic or rem-stages) and [TYPE] is one of [SLEEP_TYPES] (e.g. main). [LEVEL] can also be all when INCLUDE_ALL_GROUPS is True, which ignores the levels and groups by sleep types.
|maxduration[LEVEL][TYPE] |minutes | Longest duration of any [LEVEL][TYPE]sleep episode. [LEVEL]is one of [SLEEP_LEVELS] (e.g. awake-classic or rem-stages) and [TYPE] is one of [SLEEP_TYPES] (e.g. main). [LEVEL] can also be all when INCLUDE_ALL_GROUPS is True, which ignores the levels and groups by sleep types.
|minduration[LEVEL][TYPE] |minutes | Shortest duration of any [LEVEL][TYPE]sleep episode. [LEVEL]is one of [SLEEP_LEVELS] (e.g. awake-classic or rem-stages) and [TYPE] is one of [SLEEP_TYPES] (e.g. main). [LEVEL] can also be all when INCLUDE_ALL_GROUPS is True, which ignores the levels and groups by sleep types.
|avgduration[LEVEL][TYPE] |minutes | Average duration of all [LEVEL][TYPE]sleep episodes. [LEVEL]is one of [SLEEP_LEVELS] (e.g. awake-classic or rem-stages) and [TYPE] is one of [SLEEP_TYPES] (e.g. main). [LEVEL] can also be all when INCLUDE_ALL_GROUPS is True, which ignores the levels and groups by sleep types.
|medianduration[LEVEL][TYPE] |minutes | Median duration of all [LEVEL][TYPE]sleep episodes. [LEVEL]is one of [SLEEP_LEVELS] (e.g. awake-classic or rem-stages) and [TYPE] is one of [SLEEP_TYPES] (e.g. main). [LEVEL] can also be all when INCLUDE_ALL_GROUPS is True, which ignores the levels and groups by sleep types.
|stdduration[LEVEL][TYPE] |minutes | Standard deviation duration of all [LEVEL][TYPE]sleep episodes. [LEVEL]is one of [SLEEP_LEVELS] (e.g. awake-classic or rem-stages) and [TYPE] is one of [SLEEP_TYPES] (e.g. main). [LEVEL] can also be all when INCLUDE_ALL_GROUPS is True, which ignores the levels and groups by sleep types.

Features description for [FITBIT_SLEEP_INTRADAY][PROVIDERS][RAPIDS] RATIOS [ACROSS_LEVELS]:

|Feature |Units |Description |
|————————– |————– |————————————————————-|
|ratiocount[LEVEL] |-|Ratio between the count of episodes of a single sleep [LEVEL] and the count of all episodes of all levels during both main and nap sleep types. This answers the question: what percentage of all wake, deep, light, and rem episodes were rem? (e.g., $countepisode[remstages][all] / countepisode[all][all]$)
|ratioduration[LEVEL] |-|Ratio between the duration of episodes of a single sleep [LEVEL] and the duration of all episodes of all levels during both main and nap sleep types. This answers the question: what percentage of all wake, deep, light, and rem time was rem? (e.g., $sumduration[remstages][all] / sumduration[all][all]$)

Features description for [FITBIT_SLEEP_INTRADAY][PROVIDERS][RAPIDS] RATIOS [ACROSS_TYPES]:

|Feature |Units |Description |
|————————– |————– |————————————————————-|
|ratiocountmain |- |Ratio between the count of all main episodes (independently of the levels inside) divided by the count of all main and nap episodes. This answers the question: what percentage of all sleep episodes (main and nap) were main? We do not provide the ratio for nap because is complementary. ($countepisode[all][main] / countepisode[all][all]$)
|ratiodurationmain |- |Ratio between the duration of all main episodes (independently of the levels inside) divided by the duration of all main and nap episodes. This answers the question: what percentage of all sleep time (main and nap) was main? We do not provide the ratio for nap because is complementary. ($sumduration[all][main] / sumduration[all][all]$)

Features description for [FITBIT_SLEEP_INTRADAY][PROVIDERS][RAPIDS] RATIOS [WITHIN_LEVELS]:

|Feature |Units |Description |
|——————————— |————– |————————————————————-|
|ratiocountmainwithin[LEVEL] |- |Ratio between the count of episodes of a single sleep [LEVEL] during main sleep divided by the count of episodes of a single sleep [LEVEL] during main and nap. This answers the question: are rem episodes more frequent during main than nap sleep? We do not provide the ratio for nap because is complementary. ($countepisode[remstages][main] / countepisode[remstages][all]$)
|ratiodurationmainwithin[LEVEL] |- |Ratio between the duration of episodes of a single sleep [LEVEL] during main sleep divided by the duration of episodes of a single sleep [LEVEL] during main and nap. This answers the question: is rem time more frequent during main than nap sleep? We do not provide the ratio for nap because is complementary. ($countepisode[remstages][main] / countepisode[remstages][all]$)

Features description for [FITBIT_SLEEP_INTRADAY][PROVIDERS][RAPIDS] RATIOS [WITHIN_TYPES]:

Feature	Units	Description
ratiocount[LEVEL]within[TYPE]	-	Ratio between the count of episodes of a single sleep [LEVEL] and the count of all episodes of all levels during either main or nap sleep types. This answers the question: what percentage of all wake, deep, light, and rem episodes were rem during main/nap sleep time? (e.g., $countepisode[remstages][main] / countepisode[all][main]$)
ratioduration[LEVEL]within[TYPE]	-	Ratio between the duration of episodes of a single sleep [LEVEL] and the duration of all episodes of all levels during either main or nap sleep types. This answers the question: what percentage of all wake, deep, light, and rem time was rem during main/nap sleep time? (e.g., $sumduration[remstages][main] / sumduration[all][main]$)

!!! note “Assumptions/Observations”
1. This diagram will help you understand how sleep episodes are chunked and grouped within time segments for the RAPIDS provider.
1. Features listed in [LEVELS_AND_TYPES] are computed for any levels and types listed in [SLEEP_LEVELS] or [SLEEP_TYPES]. For example if STAGES only contains [rem, light] you will not get countepisode[wake|deep][TYPE] or sum, max, min, avg, median, or std duration. Levels or types in these lists do not influence RATIOS or ROUTINE features.
2. Any [LEVEL] grouping is done within the elements of each class CLASSIC, STAGES, and UNIFIED. That is, we never combine CLASSIC or STAGES types to compute features.
3. The categories for all levels (when INCLUDE_ALL_GROUPS is True) and all SLEEP_TYPES are not considered for RATIOS features as they are always 1.
3. These features can be computed in time segments of any length, but only the 1-minute sleep chunks within each segment instance will be used.

PRICE provider

!!! hint “Understanding PRICE features”
This diagram will help you understand how sleep episodes are chunked and grouped within time segments and LNE-LNE intervals for the PRICE provider.

!!! info “Available time segments”
- Available for any time segments larger or equal to one day

!!! info “File Sequence”
bash - data/raw/{pid}/fitbit_sleep_intraday_raw.csv - data/raw/{pid}/fitbit_sleep_intraday_parsed.csv - data/interim/{pid}/fitbit_sleep_intraday_episodes_resampled.csv - data/interim/{pid}/fitbit_sleep_intraday_episodes_resampled_with_datetime.csv - data/interim/{pid}/fitbit_sleep_intraday_features/fitbit_sleep_intraday_{language}_{provider_key}.csv - data/processed/features/{pid}/fitbit_sleep_intraday.csv

Parameters description for [FITBIT_SLEEP_INTRADAY][PROVIDERS][PRICE]:

|Key | Description |
|—————-|——
|[COMPUTE] | Set to True to extract FITBIT_SLEEP_INTRADAY features from the PRICE provider |
|[FEATURES] | Features to be computed from sleep intraday data, see table below|[SLEEP_LEVELS] | Fitbit’s sleep API Version 1 only provides CLASSIC records. However, Version 1.2 provides 2 types of records: CLASSIC and STAGES. STAGES is only available in devices with a heart rate sensor and even those devices will fail to report it if the battery is low or the device is not tight enough. While CLASSIC contains 3 sleep levels (awake, restless, and asleep), STAGES contains 4 sleep levels (wake, deep, light, rem). To make it consistent, RAPIDS groups them into 2 UNIFIED sleep levels: awake (CLASSIC: awake and restless; STAGES: wake) and asleep (CLASSIC: asleep; STAGES: deep, light, and rem). In this section, there is a boolean flag named INCLUDE_ALL_GROUPS that if set to TRUE, computes avgdurationallmain[DAY_TYPE] features grouping all levels together in a single all category.
|[DAY_TYPE] | The features of this provider can be computed using daily averages/standard deviations that were extracted on WEEKEND days only, WEEK days only, or ALL days|
|[LAST_NIGHT_END] | Only main sleep episodes that start within the LNE-LNE interval [LAST_NIGHT_END, LAST_NIGHT_END + 23H 59M 59S] are taken into account to compute the features described below. [LAST_NIGHT_END] is a number ranging from 0 (midnight) to 1439 (23:59). |

Features description for [FITBIT_SLEEP_INTRADAY][PROVIDERS][PRICE]:

|Feature |Units |Description |
|————————————- |—————– |————————————————————-|
|avgduration[LEVEL]main[DAY_TYPE] |minutes | Average duration of daily sleep chunks of a LEVEL. Use the DAY_TYPE flag to include daily durations from weekend days only, weekdays, or both. Use [LEVEL] to group all levels in a single all category.
|avgratioduration[LEVEL]withinmain[DAY_TYPE] |- | Average of the daily ratio between the duration of sleep chunks of a LEVEL and total duration of all main sleep episodes in a day. When INCLUDE_ALL_GROUPS is True the all LEVEL is ignored since this feature is always 1. Use the DAY_TYPE flag to include start times from weekend days only, weekdays, or both.
|avgstarttimeofepisodemain[DAY_TYPE] |minutes | Average of all start times of the first main sleep episode within each LNE-LNE interval in a time segment. Use the DAY_TYPE flag to include start times from LNE-LNE intervals that start on weekend days only, weekdays, or both.
|avgendtimeofepisodemain[DAY_TYPE] |minutes | Average of all end times of the last main sleep episode within each LNE-LNE interval in a time segment. Use the DAY_TYPE flag to include end times from LNE-LNE intervals that start on weekend days only, weekdays, or both.
|avgmidpointofepisodemain[DAY_TYPE] |minutes | Average of all the differences between avgendtime... and avgstarttime.. in a time segment. Use the DAY_TYPE flag to include end times from LNE-LNE intervals that start on weekend days only, weekdays, or both.
|stdstarttimeofepisodemain[DAY_TYPE] |minutes | Standard deviation of all start times of the first main sleep episode within each LNE-LNE interval in a time segment. Use the DAY_TYPE flag to include start times from LNE-LNE intervals that start on weekend days only, weekdays, or both.
|stdendtimeofepisodemain[DAY_TYPE] |minutes | Standard deviation of all end times of the last main sleep episode within each LNE-LNE interval in a time segment. Use the DAY_TYPE flag to include end times from LNE-LNE intervals that start on weekend days only, weekdays, or both.
|stdmidpointofepisodemain[DAY_TYPE] |minutes | Standard deviation of all the differences between avgendtime... and avgstarttime.. in a time segment. Use the DAY_TYPE flag to include end times from LNE-LNE intervals that start on weekend days only, weekdays, or both.
|socialjetlag |minutes | Difference in minutes between the avgmidpointofepisodemain of weekends and weekdays that belong to each time segment instance. If your time segment does not contain at least one week day and one weekend day this feature will be NA.
|rmssdmeanstarttimeofepisodemain |minutes | Square root of the mean squared successive difference (RMSSD) between today’s and yesterday’s starttimeofepisodemain values across the entire participant’s sleep data grouped per time segment instance. It represents the mean of how someone’s starttimeofepisodemain (bedtime) changed from night to night.
|rmssdmeanendtimeofepisodemain |minutes | Square root of the mean squared successive difference (RMSSD) between today’s and yesterday’s endtimeofepisodemain values across the entire participant’s sleep data grouped per time segment instance. It represents the mean of how someone’s endtimeofepisodemain (wake time) changed from night to night.
|rmssdmeanmidpointofepisodemain |minutes | Square root of the mean squared successive difference (RMSSD) between today’s and yesterday’s midpointofepisodemain values across the entire participant’s sleep data grouped per time segment instance. It represents the mean of how someone’s midpointofepisodemain (mid time between bedtime and wake time) changed from night to night.
|rmssdmedianstarttimeofepisodemain |minutes | Square root of the median squared successive difference (RMSSD) between today’s and yesterday’s starttimeofepisodemain values across the entire participant’s sleep data grouped per time segment instance. It represents the median of how someone’s starttimeofepisodemain (bedtime) changed from night to night.
|rmssdmedianendtimeofepisodemain |minutes | Square root of the median squared successive difference (RMSSD) between today’s and yesterday’s endtimeofepisodemain values across the entire participant’s sleep data grouped per time segment instance. It represents the median of how someone’s endtimeofepisodemain (wake time) changed from night to night.
|rmssdmedianmidpointofepisodemain |minutes | Square root of the median squared successive difference (RMSSD) between today’s and yesterday’s midpointofepisodemain values across the entire participant’s sleep data grouped per time segment instance. It represents the median of how someone’s midpointofepisodemain (average mid time between bedtime and wake time) changed from night to night.

!!! note “Assumptions/Observations”
1. This diagram will help you understand how sleep episodes are chunked and grouped within time segments and LNE-LNE intervals for the PRICE provider.
1. We recommend you use periodic segments that start in the morning so RAPIDS can chunk and group sleep episodes overnight. Shifted segments (as any other segments) are labelled based on their start and end date times.
5. avgstarttime... and avgendtime... are roughly equivalent to an average bed and awake time only if you are using shifted segments.
1. The features of this provider are only available on time segments that are longer than 24 hours because they are based on descriptive statistics computed across daily values.
2. Even though Fitbit provides 2 types of sleep episodes (main and nap), only main sleep episodes are considered.
4. The reference point for all times is 00:00 of the first day in the LNE-LNE interval.
5. Sleep episodes are formed by 1-minute chunks that we group overnight starting from today’s LNE and ending on tomorrow’s LNE or the end of that segment (whatever is first).
5. The features avgstarttime... and avgendtime... are the average of the first and last sleep episode across every LNE-LNE interval within a segment (avgmidtime... is the mid point between start and end). Therefore, only segments longer than 24hrs will be averaged across more than one LNE-LNE interval.
5. socialjetlag is only available on segment instances equal or longer than 48hrs that contain at least one weekday day and one weekend day, for example seven-day (weekly) segments.

Fitbit Sleep Summary

Sensor parameters description for [FITBIT_SLEEP_SUMMARY]:

|Key | Description |
|—————-|———–
|[CONTAINER]| Container where your sleep summary data is stored, depending on the data stream you are using this can be a database table, a CSV file, etc. |

RAPIDS provider

!!! hint “Understanding RAPIDS features”
This diagram will help you understand how sleep episodes are chunked and grouped within time segments using SLEEP_SUMMARY_LAST_NIGHT_END for the RAPIDS provider.

!!! info “Available time segments”
- Only available for segments that span 1 or more complete days (e.g. Jan 1st 00:00 to Jan 3rd 23:59)

!!! info “File Sequence”
bash - data/raw/{pid}/fitbit_sleep_summary_raw.csv - data/raw/{pid}/fitbit_sleep_summary_with_datetime.csv - data/interim/{pid}/fitbit_sleep_summary_features/fitbit_sleep_summary_{language}_{provider_key}.csv - data/processed/features/{pid}/fitbit_sleep_summary.csv

Parameters description for [FITBIT_SLEEP_SUMMARY][PROVIDERS][RAPIDS]:

|Key | Description |
|—————-|———–
[COMPUTE]	Set to True to extract FITBIT_SLEEP_SUMMARY features from the RAPIDS provider
[SLEEP_TYPES]	Types of sleep to be included in the feature extraction computation. There are three sleep types: main, nap, and all. The all type means both main sleep and naps are considered.
[FEATURES]	Features to be computed from sleep summary data, see table below
[FITBIT_DATA_STREAMS][data stream][SLEEP_SUMMARY_LAST_NIGHT_END]	As an exception, the LAST_NIGHT_END parameter for this provider is in the data stream configuration section. This parameter controls how sleep episodes are assigned to different days and affects wake and bedtimes.

Features description for [FITBIT_SLEEP_SUMMARY][PROVIDERS][RAPIDS]:

|Feature |Units |Description |
|—————————— |———- |——————————————– |
|firstwaketimeTYPE |minutes |First wake time for a certain sleep type during a time segment. Wake time is number of minutes after midnight of a sleep episode’s end time.
|lastwaketimeTYPE |minutes |Last wake time for a certain sleep type during a time segment. Wake time is number of minutes after midnight of a sleep episode’s end time.
|firstbedtimeTYPE |minutes |First bedtime for a certain sleep type during a time segment. Bedtime is number of minutes after midnight of a sleep episode’s start time.
|lastbedtimeTYPE |minutes |Last bedtime for a certain sleep type during a time segment. Bedtime is number of minutes after midnight of a sleep episode’s start time.
|countepisodeTYPE |episodes |Number of sleep episodes for a certain sleep type during a time segment.
|avgefficiencyTYPE |scores |Average sleep efficiency for a certain sleep type during a time segment.
|sumdurationafterwakeupTYPE |minutes |Total duration the user stayed in bed after waking up for a certain sleep type during a time segment.
|sumdurationasleepTYPE |minutes |Total sleep duration for a certain sleep type during a time segment.
|sumdurationawakeTYPE |minutes |Total duration the user stayed awake but still in bed for a certain sleep type during a time segment.
|sumdurationtofallasleepTYPE |minutes |Total duration the user spent to fall asleep for a certain sleep type during a time segment.
|sumdurationinbedTYPE |minutes |Total duration the user stayed in bed (sumdurationtofallasleep + sumdurationawake + sumdurationasleep + sumdurationafterwakeup) for a certain sleep type during a time segment.
|avgdurationafterwakeupTYPE |minutes |Average duration the user stayed in bed after waking up for a certain sleep type during a time segment.
|avgdurationasleepTYPE |minutes |Average sleep duration for a certain sleep type during a time segment.
|avgdurationawakeTYPE |minutes |Average duration the user stayed awake but still in bed for a certain sleep type during a time segment.
|avgdurationtofallasleepTYPE |minutes |Average duration the user spent to fall asleep for a certain sleep type during a time segment.
|avgdurationinbedTYPE |minutes |Average duration the user stayed in bed (sumdurationtofallasleep + sumdurationawake + sumdurationasleep + sumdurationafterwakeup) for a certain sleep type during a time segment.

!!! note “Assumptions/Observations”
1. This diagram will help you understand how sleep episodes are chunked and grouped within time segments using LNE for the RAPIDS provider.
1. There are three sleep types (TYPE): main, nap, all. The all type groups both main sleep and naps. All types are based on Fitbit’s labels.
2. There are two versions of Fitbit’s sleep API (version 1 [https://dev.fitbit.com/build/reference/web-api/sleep-v1/] and version 1.2 [https://dev.fitbit.com/build/reference/web-api/sleep/]), and each provides raw sleep data in a different format:
- Count & duration summaries. v1 contains count_awake, duration_awake, count_awakenings, count_restless, and duration_restless fields for every sleep record but v1.2 does not.
3. API columns. Most features are computed based on the values provided by Fitbit’s API: efficiency, minutes_after_wakeup, minutes_asleep, minutes_awake, minutes_to_fall_asleep, minutes_in_bed, is_main_sleep and type.
4. Bed time and sleep duration are based on episodes that started between today’s LNE and tomorrow’s LNE while awake time is based on the episodes that started between yesterday’s LNE and today’s LNE
5. The reference point for bed/awake times is today’s 00:00. You can have bedtimes larger than 24 and awake times smaller than 0
6. These features are only available for time segments that span midnight to midnight of the same or different day.
7. We include first and last wake and bedtimes because, when LAST_NIGHT_END is 10 am, the first bedtime could match a nap at 2 pm, and the last bedtime could match a main overnight sleep episode that starts at 10pm.
5. Set the value for SLEEP_SUMMARY_LAST_NIGHT_END int the config parameter [FITBIT_DATA_STREAMS][data stream][SLEEP_SUMMARY_LAST_NIGHT_END].

Fitbit Steps Intraday

Sensor parameters description for [FITBIT_STEPS_INTRADAY]:

|Key | Description |
|—————-|———–
|[CONTAINER]| Container where your steps intraday data is stored, depending on the data stream you are using this can be a database table, a CSV file, etc. |
|[EXCLUDE_SLEEP] | Step data will be excluded if it was logged during sleep periods when at least one [EXCLUDE] flag is set to True. Sleep can be delimited by (1) a fixed period that repeats on every day if [TIME_BASED][EXCLUDE] is True or (2) by Fitbit summary sleep episodes if [FITBIT_BASED][EXCLUDE] is True. If both are True (3), we use all Fitbit sleep episodes as well as the time-based episodes that do not overlap with any Fitbit episodes. If [TIME_BASED][EXCLUDE] is True, make sure Fitbit sleep summary container points to a valid table or file.

RAPIDS provider

!!! info “Available time segments”
- Available for all time segments

!!! info “File Sequence”
bash - data/raw/{pid}/fitbit_steps_intraday_raw.csv - data/raw/{pid}/fitbit_steps_intraday_with_datetime.csv - data/raw/{pid}/fitbit_sleep_summary_raw.csv (Only when [EXCLUDE_SLEEP][EXCLUDE]=True and [EXCLUDE_SLEEP][TYPE]=FITBIT_BASED) - data/interim/{pid}/fitbit_steps_intraday_with_datetime_exclude_sleep.csv (Only when [EXCLUDE_SLEEP][EXCLUDE]=True) - data/interim/{pid}/fitbit_steps_intraday_features/fitbit_steps_intraday_{language}_{provider_key}.csv - data/processed/features/{pid}/fitbit_steps_intraday.csv

Parameters description for [FITBIT_STEPS_INTRADAY][PROVIDERS][RAPIDS]:

|Key | Description |
|—————-|———–
[COMPUTE]	Set to True to extract FITBIT_STEPS_INTRADAY features from the RAPIDS provider
[FEATURES]	Features to be computed from steps intraday data, see table below
[REFERENCE_HOUR]	The reference point from which firststeptime or laststeptime is to be computed, default is midnight
[THRESHOLD_ACTIVE_BOUT]	Every minute with Fitbit steps data wil be labelled as sedentary if its step count is below this threshold, otherwise, active.
[INCLUDE_ZERO_STEP_ROWS]	Whether or not to include time segments with a 0 step count during the whole day.

Features description for [FITBIT_STEPS_INTRADAY][PROVIDERS][RAPIDS]:

|Feature |Units |Description |
|————————– |————– |————————————————————-|
|sumsteps |steps |The total step count during a time segment.
|maxsteps |steps |The maximum step count during a time segment.
|minsteps |steps |The minimum step count during a time segment.
|avgsteps |steps |The average step count during a time segment.
|stdsteps |steps |The standard deviation of step count during a time segment.
|firststeptime |minutes |Minutes until the first non-zero step count.
|laststeptime |minutes |Minutes until the last non-zero step count.
|countepisodesedentarybout |bouts |Number of sedentary bouts during a time segment.
|sumdurationsedentarybout |minutes |Total duration of all sedentary bouts during a time segment.
|maxdurationsedentarybout |minutes |The maximum duration of any sedentary bout during a time segment.
|mindurationsedentarybout |minutes |The minimum duration of any sedentary bout during a time segment.
|avgdurationsedentarybout |minutes |The average duration of sedentary bouts during a time segment.
|stddurationsedentarybout |minutes |The standard deviation of the duration of sedentary bouts during a time segment.
|countepisodeactivebout |bouts |Number of active bouts during a time segment.
|sumdurationactivebout |minutes |Total duration of all active bouts during a time segment.
|maxdurationactivebout |minutes |The maximum duration of any active bout during a time segment.
|mindurationactivebout |minutes |The minimum duration of any active bout during a time segment.
|avgdurationactivebout |minutes |The average duration of active bouts during a time segment.
|stddurationactivebout |minutes |The standard deviation of the duration of active bouts during a time segment.

!!! note “Assumptions/Observations”

1. _Active and sedentary bouts_. If the step count per minute is smaller than `THRESHOLD_ACTIVE_BOUT` (default value is 10), that minute is labelled as sedentary, otherwise, is labelled as active. Active and sedentary bouts are periods of consecutive minutes labelled as `active` or `sedentary`.

Fitbit Steps Summary

Sensor parameters description for [FITBIT_STEPS_SUMMARY]:

|Key | Description |
|—————-|———–
|[CONTAINER]| Container where your steps summary data is stored, depending on the data stream you are using this can be a database table, a CSV file, etc. |

RAPIDS provider

!!! info “Available time segments”
- Only available for segments that span 1 or more complete days (e.g. Jan 1st 00:00 to Jan 3rd 23:59)

!!! info “File Sequence”
bash - data/raw/{pid}/fitbit_steps_summary_raw.csv - data/raw/{pid}/fitbit_steps_summary_with_datetime.csv - data/interim/{pid}/fitbit_steps_summary_features/fitbit_steps_summary_{language}_{provider_key}.csv - data/processed/features/{pid}/fitbit_steps_summary.csv

Parameters description for [FITBIT_STEPS_SUMMARY][PROVIDERS][RAPIDS]:

|Key | Description |
|—————-|———–
|[COMPUTE] | Set to True to extract FITBIT_STEPS_SUMMARY features from the RAPIDS provider|
|[FEATURES] | Features to be computed from steps summary data, see table below |

Features description for [FITBIT_STEPS_SUMMARY][PROVIDERS][RAPIDS]:

|Feature |Units |Description |
|————————– |———- |——————————————– |
|maxsumsteps |steps |The maximum daily step count during a time segment.
|minsumsteps |steps |The minimum daily step count during a time segment.
|avgsumsteps |steps |The average daily step count during a time segment.
|mediansumsteps |steps |The median of daily step count during a time segment.
|stdsumsteps |steps |The standard deviation of daily step count during a time segment.

!!! note “Assumptions/Observations”

NA

Phone Accelerometer

Sensor parameters description for [PHONE_ACCELEROMETER]:

|Key | Description |
|—————-|———–
|[CONTAINER]| Data stream container (database table, CSV file, etc.) where the accelerometer data is stored

RAPIDS provider

!!! info “Available time segments and platforms”
- Available for all time segments
- Available for Android and iOS

!!! info “File Sequence”
bash - data/raw/{pid}/phone_accelerometer_raw.csv - data/raw/{pid}/phone_accelerometer_with_datetime.csv - data/interim/{pid}/phone_accelerometer_features/phone_accelerometer_{language}_{provider_key}.csv - data/processed/features/{pid}/phone_accelerometer.csv

Parameters description for [PHONE_ACCELEROMETER][PROVIDERS][RAPIDS]:

|Key | Description |
|—————-|———–
|[COMPUTE]| Set to True to extract PHONE_ACCELEROMETER features from the RAPIDS provider|
|[FEATURES] | Features to be computed, see table below

Features description for [PHONE_ACCELEROMETER][PROVIDERS][RAPIDS]:

|Feature |Units |Description|
|————————– |———- |—————————|
|maxmagnitude |m/s^2^ |The maximum magnitude of acceleration ($|acceleration| = \sqrt{x^2 + y^2 + z^2}$).
|minmagnitude |m/s^2^ |The minimum magnitude of acceleration.
|avgmagnitude |m/s^2^ |The average magnitude of acceleration.
|medianmagnitude |m/s^2^ |The median magnitude of acceleration.
|stdmagnitude |m/s^2^ |The standard deviation of acceleration.

!!! note “Assumptions/Observations”
1. Analyzing accelerometer data is a memory intensive task. If RAPIDS crashes is likely because the accelerometer dataset for a participant is to big to fit in memory. We are considering different alternatives to overcome this problem.

PANDA provider

These features are based on the work by Panda et al.

!!! info “Available time segments and platforms”
- Available for all time segments
- Available for Android and iOS

!!! info “File Sequence”
bash - data/raw/{pid}/phone_accelerometer_raw.csv - data/raw/{pid}/phone_accelerometer_with_datetime.csv - data/interim/{pid}/phone_accelerometer_features/phone_accelerometer_{language}_{provider_key}.csv - data/processed/features/{pid}/phone_accelerometer.csv

Parameters description for [PHONE_ACCELEROMETER][PROVIDERS][PANDA]:

|Key | Description |
|—————-|———–
|[COMPUTE]| Set to True to extract PHONE_ACCELEROMETER features from the PANDA provider|
|[FEATURES] | Features to be computed for exertional and non-exertional activity episodes, see table below

Features description for [PHONE_ACCELEROMETER][PROVIDERS][PANDA]:

Feature	Units	Description
————————–	———-	—————————
sumduration	minutes	Total duration of all exertional or non-exertional activity episodes.
maxduration	minutes	Longest duration of any exertional or non-exertional activity episode.
minduration	minutes	Shortest duration of any exertional or non-exertional activity episode.
avgduration	minutes	Average duration of any exertional or non-exertional activity episode.
medianduration	minutes	Median duration of any exertional or non-exertional activity episode.
stdduration	minutes	Standard deviation of the duration of all exertional or non-exertional activity episodes.

!!! note “Assumptions/Observations”
1. Analyzing accelerometer data is a memory intensive task. If RAPIDS crashes is likely because the accelerometer dataset for a participant is to big to fit in memory. We are considering different alternatives to overcome this problem.
2. See Panda et al for a definition of exertional and non-exertional activity episodes

Phone Activity Recognition

Sensor parameters description for [PHONE_ACTIVITY_RECOGNITION]:

|Key | Description |
|—————-|———–
|[CONTAINER][ANDROID]| Data stream container (database table, CSV file, etc.) where the activity data from Android devices is stored (the AWARE client saves this data on different tables for Android and iOS)
|[CONTAINER][IOS]| Data stream container (database table, CSV file, etc.) where the activity data from iOS devices is stored (the AWARE client saves this data on different tables for Android and iOS)
|[EPISODE_THRESHOLD_BETWEEN_ROWS] | Difference in minutes between any two rows for them to be considered part of the same activity episode

RAPIDS provider

!!! info “Available time segments and platforms”
- Available for all time segments
- Available for Android and iOS

!!! info “File Sequence”
bash - data/raw/{pid}/phone_activity_recognition_raw.csv - data/raw/{pid}/phone_activity_recognition_with_datetime.csv - data/interim/{pid}/phone_activity_recognition_episodes.csv - data/interim/{pid}/phone_activity_recognition_episodes_resampled.csv - data/interim/{pid}/phone_activity_recognition_episodes_resampled_with_datetime.csv - data/interim/{pid}/phone_activity_recognition_features/phone_activity_recognition_{language}_{provider_key}.csv - data/processed/features/{pid}/phone_activity_recognition.csv

Parameters description for [PHONE_ACTIVITY_RECOGNITION][PROVIDERS][RAPIDS]:

|Key | Description |
|—————-|———–
|[COMPUTE]| Set to True to extract PHONE_ACTIVITY_RECOGNITION features from the RAPIDS provider|
|[FEATURES] | Features to be computed, see table below
|[ACTIVITY_CLASSES][STATIONARY] | An array of the activity labels to be considered in the STATIONARY category choose any of still, tilting
|[ACTIVITY_CLASSES][MOBILE] | An array of the activity labels to be considered in the MOBILE category choose any of on_foot, walking, running, on_bicycle
|[ACTIVITY_CLASSES][VEHICLE] | An array of the activity labels to be considered in the VEHICLE category choose any of in_vehicule

Features description for [PHONE_ACTIVITY_RECOGNITION][PROVIDERS][RAPIDS]:

|Feature |Units |Description|
|————————– |———- |—————————|
|count |rows | Number of episodes.
|mostcommonactivity |activity type | The most common activity type (e.g. still, on_foot, etc.). If there is a tie, the first one is chosen.
|countuniqueactivities |activity type | Number of unique activities.
|durationstationary |minutes | The total duration of [ACTIVITY_CLASSES][STATIONARY] episodes of still and tilting activities
|durationmobile |minutes | The total duration of [ACTIVITY_CLASSES][MOBILE] episodes of on foot, running, and on bicycle activities
|durationvehicle |minutes | The total duration of [ACTIVITY_CLASSES][VEHICLE] episodes of on vehicle activity

!!! note “Assumptions/Observations”
1. iOS Activity Recognition names and types are unified with Android labels:

iOS Activity Name	Android Activity Name	Android Activity Type
`walking`	`walking`	`7`
`running`	`running`	`8`
`cycling`	`on_bicycle`	`1`
`automotive`	`in_vehicle`	`0`
`stationary`	`still`	`3`
`unknown`	`unknown`	`4`

2. In AWARE, Activity Recognition data for Android and iOS are stored in two different database tables, RAPIDS automatically infers what platform each participant belongs to based on their [participant file](../../setup/configuration/#participant-files).

Phone Applications Crashes

Sensor parameters description for [PHONE_APPLICATIONS_CRASHES]:

|Key | Description |
|—————-|———–
|[CONTAINER]| Data stream container (database table, CSV file, etc.) where the applications crashes data is stored
|[APPLICATION_CATEGORIES][CATALOGUE_SOURCE] | FILE or GOOGLE. If FILE, app categories (genres) are read from [CATALOGUE_FILE]. If [GOOGLE], app categories (genres) are scrapped from the Play Store
|[APPLICATION_CATEGORIES][CATALOGUE_FILE] | CSV file with a package_name and genre column. By default we provide the catalogue created by Stachl et al in data/external/stachl_application_genre_catalogue.csv
|[APPLICATION_CATEGORIES][UPDATE_CATALOGUE_FILE] | if [CATALOGUE_SOURCE] is equal to FILE, this flag signals whether or not to update [CATALOGUE_FILE], if [CATALOGUE_SOURCE] is equal to GOOGLE all scraped genres will be saved to [CATALOGUE_FILE]
|[APPLICATION_CATEGORIES][SCRAPE_MISSING_CATEGORIES] | This flag signals whether or not to scrape categories (genres) missing from the [CATALOGUE_FILE]. If [CATALOGUE_SOURCE] is equal to GOOGLE, all genres are scraped anyway (this flag is ignored)

!!! note
No feature providers have been implemented for this sensor yet, however you can use its key (PHONE_APPLICATIONS_CRASHES) to improve PHONE_DATA_YIELD or you can implement your own features.

Phone Applications Foreground

Sensor parameters description for [PHONE_APPLICATIONS_FOREGROUND] (these parameters are used by the only provider available at the moment, RAPIDS):

|Key | Description |
|—————-|———–
|[CONTAINER]| Data stream container (database table, CSV file, etc.) where the applications foreground data is stored
|[APPLICATION_CATEGORIES][CATALOGUE_SOURCE] | FILE or GOOGLE. If FILE, app categories (genres) are read from [CATALOGUE_FILE]. If [GOOGLE], app categories (genres) are scrapped from the Play Store
|[APPLICATION_CATEGORIES][CATALOGUE_FILE] | CSV file with a package_name and genre column. By default we provide the catalogue created by Stachl et al in data/external/stachl_application_genre_catalogue.csv
|[APPLICATION_CATEGORIES][UPDATE_CATALOGUE_FILE] | if [CATALOGUE_SOURCE] is equal to FILE, this flag signals whether or not to update [CATALOGUE_FILE], if [CATALOGUE_SOURCE] is equal to GOOGLE all scraped genres will be saved to [CATALOGUE_FILE]
|[APPLICATION_CATEGORIES][SCRAPE_MISSING_CATEGORIES] | This flag signals whether or not to scrape categories (genres) missing from the [CATALOGUE_FILE]. If [CATALOGUE_SOURCE] is equal to GOOGLE, all genres are scraped anyway (this flag is ignored)

RAPIDS provider

The app category (genre) catalogue used in these features was originally created by Stachl et al.

!!! info “Available time segments and platforms”
- Available for all time segments
- Available for Android only

!!! info “File Sequence”
bash - data/raw/{pid}/phone_applications_foreground_raw.csv - data/raw/{pid}/phone_applications_foreground_with_datetime.csv - data/raw/{pid}/phone_applications_foreground_with_datetime_with_categories.csv - data/interim/{pid}/phone_applications_foreground_features/phone_applications_foreground_{language}_{provider_key}.csv - data/processed/features/{pid}/phone_applications_foreground.csv

Parameters description for [PHONE_APPLICATIONS_FOREGROUND][PROVIDERS][RAPIDS]:

|Key | Description |
|—————-|———–
|[COMPUTE]| Set to True to extract PHONE_APPLICATIONS_FOREGROUND features from the RAPIDS provider|
|[INCLUDE_EPISODE_FEATURES]| Set to True to extract features from application usage episodes using Screen data. If set to True, all episodes and events features are computed from episode data; otherwise, events features are computed from event data |
|[FEATURES] | Features to be computed, see table below
|[SINGLE_CATEGORIES] | An array of app categories to be included in the feature extraction computation. The special keyword all represents a category with all the apps from each participant. By default, we use the category catalog pointed by [APPLICATION_CATEGORIES][CATALOGUE_FILE] (see the Sensor parameters description table above)
|[CUSTOM_CATEGORIES] | An array of collections representing your own app categories. The key of each element is the name of the custom category, and the value is an array of the package names (apps) included in that category.
|[MULTIPLE_CATEGORIES] | An array of collections representing meta-categories (a group of categories). The key of each element is the name of the meta-category and the value is an array of member app categories. By default, we use the category catalog pointed by [APPLICATION_CATEGORIES][CATALOGUE_FILE] (see the Sensor parameters description table above)
|[SINGLE_APPS] | An array of apps to be included in the feature extraction computation. Use their package name (e.g. com.google.android.youtube) or the reserved keyword top1global (the most used app by a participant over the whole monitoring study)
|[EXCLUDED_CATEGORIES] | An array of app categories to be excluded from the feature extraction computation. By default, we use the category catalog pointed by [APPLICATION_CATEGORIES][CATALOGUE_FILE] (see the Sensor parameters description table above)
|[EXCLUDED_APPS] | An array of apps to be excluded from the feature extraction computation. Use their package name, for example: com.google.android.youtube

Features description for [PHONE_APPLICATIONS_FOREGROUND][PROVIDERS][RAPIDS]:

|Feature |Units |Description|
|————————– |———- |—————————|
|countevent |apps | Number of times a single app or apps within a category were used (i.e. they were brought to the foreground either by tapping their icon or switching to it from another app)
|timeoffirstuse |minutes | The time in minutes between 12:00am (midnight) and the first use of a single app or apps within a category during a time_segment
|timeoflastuse |minutes | The time in minutes between 12:00am (midnight) and the last use of a single app or apps within a category during a time_segment
|frequencyentropy |nats | The entropy of the used apps within a category during a time_segment (each app is seen as a unique event, the more apps were used, the higher the entropy). This is especially relevant when computed over all apps. Entropy cannot be obtained for a single app
|countepisode |apps | Number of times a usage episode of a single app or apps within a category were logged. In contrast to countevent, if an app was used across more than one time segment (for example, across more than one 30-minute segment), the countepisode will be one on each time segment instance.
|minduration |minutes | For a time_segment, the minimum duration an application was used in minutes
|maxduration |minutes | For a time_segment, the maximum duration an application was used in minutes
|meanduration |minutes | For a time_segment, the mean duration of all the applications used in minutes
|sumduration |minutes | For a time_segment, the sum duration of all the applications used in minutes

!!! note “Assumptions/Observations”
1. Features can be computed by app, by apps grouped under a single category (genre), by your own categories, or by multiple categories grouped together (meta-categories). For example, we can get features for Facebook (single app), for Social Network apps (a category including Facebook and other social media apps), for Traditional Social Media (a custom category that includes Twitter and Facebook), or for Social (a meta-category formed by Social Network and Social Media Tools categories).

2. Apps installed by default like YouTube are considered systems apps on some phones. We do an exact match to exclude apps where "genre" == `EXCLUDED_CATEGORIES` or "package_name" == `EXCLUDED_APPS`.

3. We provide four ways of classifying an app within a category (genre): a) by automatically scraping its official category from the Google Play Store, b) by using the catalog created by Stachl et al., which we provide in RAPIDS (`data/external/stachl_application_genre_catalogue.csv`), c) by manually creating a personalized catalog, or d) by defining a custom category in `config.yaml`. You can choose a, b, or c by modifying `[APPLICATION_GENRES]` keys and values (see the first table of this page).

4. We count `episodes` and `events` separately. Events are single app logs (when an app was opened), but episodes span from the time an app was opened until a new app is in the foreground or the screen is locked. Episodes will be chunked across any overlapping time segments. The `top1global` of `episodes` might not be the same as the `top1global` of `events`.

5. The application episodes are calculated using the application foreground and screen unlock episode data. An application episode starts when the application is launched and ends when new application is launched, or the screen is locked.

Phone Applications Notifications

Sensor parameters description for [PHONE_APPLICATIONS_NOTIFICATIONS]:

|Key | Description |
|—————-|———–
|[CONTAINER]| Data stream container (database table, CSV file, etc.) where the applications notifications data is stored
|[APPLICATION_CATEGORIES][CATALOGUE_SOURCE] | FILE or GOOGLE. If FILE, app categories (genres) are read from [CATALOGUE_FILE]. If [GOOGLE], app categories (genres) are scrapped from the Play Store
|[APPLICATION_CATEGORIES][CATALOGUE_FILE] | CSV file with a package_name and genre column. By default we provide the catalogue created by Stachl et al in data/external/stachl_application_genre_catalogue.csv
|[APPLICATION_CATEGORIES][UPDATE_CATALOGUE_FILE] | if [CATALOGUE_SOURCE] is equal to FILE, this flag signals whether or not to update [CATALOGUE_FILE], if [CATALOGUE_SOURCE] is equal to GOOGLE all scraped genres will be saved to [CATALOGUE_FILE]
|[APPLICATION_CATEGORIES][SCRAPE_MISSING_CATEGORIES] | This flag signals whether or not to scrape categories (genres) missing from the [CATALOGUE_FILE]. If [CATALOGUE_SOURCE] is equal to GOOGLE, all genres are scraped anyway (this flag is ignored)

!!! note
No feature providers have been implemented for this sensor yet, however you can use its key (PHONE_APPLICATIONS_NOTIFICATIONS) to improve PHONE_DATA_YIELD or you can implement your own features.

Phone Battery

Sensor parameters description for [PHONE_BATTERY]:

|Key | Description |
|—————-|———–
|[CONTAINER]| Data stream container (database table, CSV file, etc.) where the battery data is stored
|[EPISODE_THRESHOLD_BETWEEN_ROWS] | Difference in minutes between any two rows for them to be considered part of the same battery charge or discharge episode

RAPIDS provider

!!! info “Available time segments and platforms”
- Available for all time segments
- Available for Android and iOS

!!! info “File Sequence”
bash - data/raw/{pid}/phone_battery_raw.csv - data/interim/{pid}/phone_battery_episodes.csv - data/interim/{pid}/phone_battery_episodes_resampled.csv - data/interim/{pid}/phone_battery_episodes_resampled_with_datetime.csv - data/interim/{pid}/phone_battery_features/phone_battery_{language}_{provider_key}.csv - data/processed/features/{pid}/phone_battery.csv

Parameters description for [PHONE_BATTERY][PROVIDERS][RAPIDS]:

|Key | Description |
|—————-|———–
|[COMPUTE]| Set to True to extract PHONE_BATTERY features from the RAPIDS provider|
|[FEATURES] | Features to be computed, see table below

Features description for [PHONE_BATTERY][PROVIDERS][RAPIDS]:

|Feature |Units |Description|
|————————– |———- |—————————|
|countdischarge |episodes | Number of discharging episodes.
|sumdurationdischarge |minutes | The total duration of all discharging episodes.
|countcharge |episodes | Number of battery charging episodes.
|sumdurationcharge |minutes | The total duration of all charging episodes.
|avgconsumptionrate |episodes/minutes | The average of all episodes’ consumption rates. An episode’s consumption rate is defined as the ratio between its battery delta and duration
|maxconsumptionrate |episodes/minutes | The highest of all episodes’ consumption rates. An episode’s consumption rate is defined as the ratio between its battery delta and duration

!!! note “Assumptions/Observations”
1. We convert battery data collected with iOS client v1 (autodetected because battery status 4 do not exist) to match Android battery format: we swap status 3 for 5 and 1 for 3
2. We group battery data into discharge or charge episodes considering any contiguous rows with consecutive reductions or increases of the battery level if they are logged within [EPISODE_THRESHOLD_BETWEEN_ROWS] minutes from each other.

Phone Bluetooth

Sensor parameters description for [PHONE_BLUETOOTH]:

|Key | Description |
|—————-|———–
|[CONTAINER]| Data stream container (database table, CSV file, etc.) where the bluetooth data is stored

RAPIDS provider

!!! warning
The features of this provider are deprecated in favor of DORYAB provider (see below).

!!! info “Available time segments and platforms”
- Available for all time segments
- Available for Android only

!!! info “File Sequence”
bash - data/raw/{pid}/phone_bluetooth_raw.csv - data/raw/{pid}/phone_bluetooth_with_datetime.csv - data/interim/{pid}/phone_bluetooth_features/phone_bluetooth_{language}_{provider_key}.csv - data/processed/features/{pid}/phone_bluetooth.csv"

Parameters description for [PHONE_BLUETOOTH][PROVIDERS][RAPIDS]:

|Key | Description |
|—————-|———–
|[COMPUTE]| Set to True to extract PHONE_BLUETOOTH features from the RAPIDS provider|
|[FEATURES] | Features to be computed, see table below

Features description for [PHONE_BLUETOOTH][PROVIDERS][RAPIDS]:

Feature	Units	Description
————————–	———-	—————————
{–countscans–}	devices	Number of scanned devices during a time segment, a device can be detected multiple times over time and these appearances are counted separately
{–uniquedevices–}	devices	Number of unique devices during a time segment as identified by their hardware (bt_address) address
{–countscansmostuniquedevice–}	scans	Number of scans of the most sensed device within each time segment instance

!!! note “Assumptions/Observations”
- From v0.2.0 countscans, uniquedevices, countscansmostuniquedevice were deprecated because they overlap with the respective features for ALL devices of the PHONE_BLUETOOTH DORYAB provider

DORYAB provider

This provider is adapted from the work by Doryab et al.

!!! info “Available time segments and platforms”
- Available for all time segments
- Available for Android only

!!! info “File Sequence”
bash - data/raw/{pid}/phone_bluetooth_raw.csv - data/raw/{pid}/phone_bluetooth_with_datetime.csv - data/interim/{pid}/phone_bluetooth_features/phone_bluetooth_{language}_{provider_key}.csv - data/processed/features/{pid}/phone_bluetooth.csv"

Parameters description for [PHONE_BLUETOOTH][PROVIDERS][DORYAB]:

|Key | Description |
|—————-|———–
|[COMPUTE]| Set to True to extract PHONE_BLUETOOTH features from the DORYAB provider|
|[FEATURES] | Features to be computed, see table below. These features are computed for three device categories: all devices, own devices and other devices.

Features description for [PHONE_BLUETOOTH][PROVIDERS][DORYAB]:

Feature	Units	Description
————————–	———-	—————————
countscans	scans	Number of scans (rows) from the devices sensed during a time segment instance. The more scans a bluetooth device has the longer it remained within range of the participant’s phone
uniquedevices	devices	Number of unique bluetooth devices sensed during a time segment instance as identified by their hardware addresses (bt_address)
meanscans	scans	Mean of the scans of every sensed device within each time segment instance
stdscans	scans	Standard deviation of the scans of every sensed device within each time segment instance
countscans{==most==}frequentdevice{==within==}segments	scans	Number of scans of the most sensed device within each time segment instance
countscans{==least==}frequentdevice{==within==}segments	scans	Number of scans of the least sensed device within each time segment instance
countscans{==most==}frequentdevice{==across==}segments	scans	Number of scans of the most sensed device across time segment instances of the same type
countscans{==least==}frequentdevice{==across==}segments	scans	Number of scans of the least sensed device across time segment instances of the same type per device
countscans{==most==}frequentdevice{==acrossdataset==}	scans	Number of scans of the most sensed device across the entire dataset of every participant
countscans{==least==}frequentdevice{==acrossdataset==}	scans	Number of scans of the least sensed device across the entire dataset of every participant

!!! note “Assumptions/Observations”
- Devices are classified as belonging to the participant (own) or to other people (others) using k-means based on the number of times and the number of days each device was detected across each participant’s dataset. See Doryab et al for more details.
- If ownership cannot be computed because all devices were detected on only one day, they are all considered as other. Thus all and other features will be equal. The likelihood of this scenario decreases the more days of data you have.
- When searching for the most frequent device across 30-minute segments, the search range is equivalent to the sum of all segments of the same time period. For instance, the countscansmostfrequentdeviceacrosssegments for the time segment (Fri 00:00:00, Fri 00:29:59) will get the count in that segment of the most frequent device found within all (00:00:00, 00:29:59) time segments. To find countscansmostfrequentdeviceacrosssegments for other devices, the search range needs to filter out all own devices. But no need to do so for countscansmostfrequentdeviceacrosssedataset. The most frequent device across the dataset stays the same for countscansmostfrequentdeviceacrossdatasetall, countscansmostfrequentdeviceacrossdatasetown and countscansmostfrequentdeviceacrossdatasetother. Same rule applies to the least frequent device across the dataset.
- The most and least frequent devices will be the same across time segment instances and across the entire dataset when every time segment instance covers every hour of a dataset. For example, daily segments (00:00 to 23:59) fall in this category but morning segments (06:00am to 11:59am) or periodic 30-minute segments don’t.

??? info "Example"

 ??? example "Simplified raw bluetooth data"
 The following is a simplified example with bluetooth data from three days and two time segments: morning and afternoon. There are two `own` devices: `5C836F5-487E-405F-8E28-21DBD40FA4FF` detected seven times across two days and `499A1EAF-DDF1-4657-986C-EA5032104448` detected eight times on a single day.
        ```csv
        local_date	segment	    bt_address                              own_device
        2016-11-29	morning	    55C836F5-487E-405F-8E28-21DBD40FA4FF              1
        2016-11-29	morning	    55C836F5-487E-405F-8E28-21DBD40FA4FF              1
        2016-11-29	morning	    55C836F5-487E-405F-8E28-21DBD40FA4FF              1
        2016-11-29	morning	    55C836F5-487E-405F-8E28-21DBD40FA4FF              1
        2016-11-29	morning	    48872A52-68DE-420D-98DA-73339A1C4685              0
        2016-11-29	afternoon	55C836F5-487E-405F-8E28-21DBD40FA4FF              1
        2016-11-29	afternoon	48872A52-68DE-420D-98DA-73339A1C4685              0
        2016-11-30	morning	    55C836F5-487E-405F-8E28-21DBD40FA4FF              1
        2016-11-30	morning	    48872A52-68DE-420D-98DA-73339A1C4685              0
        2016-11-30	morning	    25262DC7-780C-4AD5-AD3A-D9776AEF7FC1              0
        2016-11-30	morning	    5B1E6981-2E50-4D9A-99D8-67AED430C5A8              0
        2016-11-30	morning	    5B1E6981-2E50-4D9A-99D8-67AED430C5A8              0
        2016-11-30	afternoon	55C836F5-487E-405F-8E28-21DBD40FA4FF              1
        2017-05-07	morning	    5C5A9C41-2F68-4CEB-96D0-77DE3729B729              0
        2017-05-07	morning	    25262DC7-780C-4AD5-AD3A-D9776AEF7FC1              0
        2017-05-07	morning	    5B1E6981-2E50-4D9A-99D8-67AED430C5A8              0
        2017-05-07	morning	    6C444841-FE64-4375-BC3F-FA410CDC0AC7              0
        2017-05-07	morning	    4DC7A22D-9F1F-4DEF-8576-086910AABCB5              0
        2017-05-07	afternoon	5B1E6981-2E50-4D9A-99D8-67AED430C5A8              0
        2017-05-07  afternoon   499A1EAF-DDF1-4657-986C-EA5032104448              1
        2017-05-07  afternoon   499A1EAF-DDF1-4657-986C-EA5032104448              1
        2017-05-07  afternoon   499A1EAF-DDF1-4657-986C-EA5032104448              1
        2017-05-07  afternoon   499A1EAF-DDF1-4657-986C-EA5032104448              1
        2017-05-07  afternoon   499A1EAF-DDF1-4657-986C-EA5032104448              1
        2017-05-07  afternoon   499A1EAF-DDF1-4657-986C-EA5032104448              1
        2017-05-07  afternoon   499A1EAF-DDF1-4657-986C-EA5032104448              1
        2017-05-07  afternoon   499A1EAF-DDF1-4657-986C-EA5032104448              1
        ```


 ??? example "The most and least frequent `OTHER` devices (`own_device == 0`) during morning segments"
 The most and least frequent `ALL`|`OWN`|`OTHER` devices are computed within each time segment instance, across time segment instances of the same type and across the entire dataset of each person. These are the most and least frequent devices for `OTHER` devices during morning segments.
        ```csv
        most frequent device across 2016-11-29 morning:   '48872A52-68DE-420D-98DA-73339A1C4685'  (this device is the only one in this instance)
        least frequent device across 2016-11-29 morning:  '48872A52-68DE-420D-98DA-73339A1C4685'  (this device is the only one in this instance)
        most frequent device across 2016-11-30 morning:   '5B1E6981-2E50-4D9A-99D8-67AED430C5A8'
        least frequent device across 2016-11-30 morning:  '25262DC7-780C-4AD5-AD3A-D9776AEF7FC1'  (when tied, the first occurance is chosen)
        most frequent device across 2017-05-07 morning:   '25262DC7-780C-4AD5-AD3A-D9776AEF7FC1'  (when tied, the first occurance is chosen)
        least frequent device across 2017-05-07 morning:  '25262DC7-780C-4AD5-AD3A-D9776AEF7FC1'  (when tied, the first occurance is chosen)
        
        most frequent across morning segments:            '5B1E6981-2E50-4D9A-99D8-67AED430C5A8'
        least frequent across morning segments:           '6C444841-FE64-4375-BC3F-FA410CDC0AC7' (when tied, the first occurance is chosen)
        
        most frequent across dataset:                     '499A1EAF-DDF1-4657-986C-EA5032104448' (only taking into account "morning" segments)
        least frequent across dataset:                    '4DC7A22D-9F1F-4DEF-8576-086910AABCB5' (when tied, the first occurance is chosen)
        ```

 ??? example "Bluetooth features for `OTHER` devices and morning segments"
 For brevity we only show the following features for morning segments:
        ```yaml
        OTHER: 
            DEVICES: ["countscans", "uniquedevices", "meanscans", "stdscans"]
            SCANS_MOST_FREQUENT_DEVICE: ["withinsegments", "acrosssegments", "acrossdataset"]
        ```

 Note that `countscansmostfrequentdeviceacrossdatasetothers` is all `0`s because `499A1EAF-DDF1-4657-986C-EA5032104448` is excluded from the count as is labelled as an `own` device (not `other`).
        ```csv
        local_segment       countscansothers	uniquedevicesothers	meanscansothers	stdscansothers	countscansmostfrequentdevicewithinsegmentsothers	countscansmostfrequentdeviceacrosssegmentsothers	countscansmostfrequentdeviceacrossdatasetothers
        2016-11-29-morning	1	                1	                1.000000	    NaN             1	                                                0.0	                                                0.0
        2016-11-30-morning	4	                3	                1.333333	    0.57735	        2	                                                2.0	                                                2.0
        2017-05-07-morning	5	                5	                1.000000	    0.00000	        1	                                                1.0	                                                1.0
        ```


Phone Calls

Sensor parameters description for [PHONE_CALLS]:

|Key | Description |
|—————-|———–
|[CONTAINER]| Data stream container (database table, CSV file, etc.) where the calls data is stored

RAPIDS Provider

!!! info “Available time segments and platforms”
- Available for all time segments
- Available for Android and iOS

!!! info “File Sequence”
bash - data/raw/{pid}/phone_calls_raw.csv - data/raw/{pid}/phone_calls_with_datetime.csv - data/interim/{pid}/phone_calls_features/phone_calls_{language}_{provider_key}.csv - data/processed/features/{pid}/phone_calls.csv

Parameters description for [PHONE_CALLS][PROVIDERS][RAPIDS]:

Key	Description
————-	——
[COMPUTE]	Set to True to extract PHONE_CALLS features from the RAPIDS provider
[FEATURES_TYPE]	Set to EPISODES to extract features based on call episodes or EVENTS to extract features based on events.
[CALL_TYPES]	The particular call_type that will be analyzed. The options for this parameter are incoming, outgoing or missed.
[FEATURES]	Features to be computed for outgoing, incoming, and missed calls. Note that the same features are available for both incoming and outgoing calls, while missed calls has its own set of features. See the tables below.

Features description for [PHONE_CALLS][PROVIDERS][RAPIDS] incoming and outgoing calls:

|Feature |Units |Description|
|————————– |———- |—————————|
|count |calls |Number of calls of a particular call_type occurred during a particular time_segment.
|distinctcontacts |contacts |Number of distinct contacts that are associated with a particular call_type for a particular time_segment
|meanduration |seconds |The mean duration of all calls of a particular call_type during a particular time_segment.
|sumduration |seconds |The sum of the duration of all calls of a particular call_type during a particular time_segment.
|minduration |seconds |The duration of the shortest call of a particular call_type during a particular time_segment.
|maxduration |seconds |The duration of the longest call of a particular call_type during a particular time_segment.
|stdduration |seconds |The standard deviation of the duration of all the calls of a particular call_type during a particular time_segment.
|modeduration |seconds |The mode of the duration of all the calls of a particular call_type during a particular time_segment.
|entropyduration |nats |The estimate of the Shannon entropy for the the duration of all the calls of a particular call_type during a particular time_segment.
|timefirstcall |minutes |The time in minutes between 12:00am (midnight) and the first call of call_type.
|timelastcall |minutes |The time in minutes between 12:00am (midnight) and the last call of call_type.
|countmostfrequentcontact |calls |The number of calls of a particular call_type during a particular time_segment of the most frequent contact throughout the monitored period.

Features description for [PHONE_CALLS][PROVIDERS][RAPIDS] missed calls:

|Feature |Units |Description|
|————————– |———- |—————————|
|count |calls |Number of missed calls that occurred during a particular time_segment.
|distinctcontacts |contacts |Number of distinct contacts that are associated with missed calls for a particular time_segment
|timefirstcall |minutes |The time in hours from 12:00am (Midnight) that the first missed call occurred.
|timelastcall |minutes |The time in hours from 12:00am (Midnight) that the last missed call occurred.
|countmostfrequentcontact |calls |The number of missed calls during a particular time_segment of the most frequent contact throughout the monitored period.

!!! note “Assumptions/Observations”
1. Traces for iOS calls are unique even for the same contact calling a participant more than once which renders countmostfrequentcontact meaningless and distinctcontacts equal to the total number of traces.
2. [CALL_TYPES] and [FEATURES] keys in config.yaml need to match. For example, [CALL_TYPES] outgoing matches the [FEATURES] key outgoing
3. iOS calls data is transformed to match Android calls data format.

Phone Conversation

Sensor parameters description for [PHONE_CONVERSATION]:

|Key | Description |
|—————-|———–
|[CONTAINER][ANDROID]| Data stream container (database table, CSV file, etc.) where the conversation data from Android devices is stored (the AWARE client saves this data on different tables for Android and iOS)
|[CONTAINER][IOS]| Data stream container (database table, CSV file, etc.) where the conversation data from iOS devices is stored (the AWARE client saves this data on different tables for Android and iOS)

RAPIDS provider

!!! info “Available time segments and platforms”
- Available for all time segments
- Available for Android only

!!! info “File Sequence”
bash - data/raw/{pid}/phone_conversation_raw.csv - data/raw/{pid}/phone_conversation_with_datetime.csv - data/interim/{pid}/phone_conversation_features/phone_conversation_{language}_{provider_key}.csv - data/processed/features/{pid}/phone_conversation.csv

Parameters description for [PHONE_CONVERSATION][PROVIDERS][RAPIDS]:

|Key | Description |
|—————-|———–
|[COMPUTE]| Set to True to extract PHONE_CONVERSATION features from the RAPIDS provider|
|[FEATURES] | Features to be computed, see table below
|[RECORDING_MINUTES] | Minutes the plugin was recording audio (default 1 min)
|[PAUSED_MINUTES] | Minutes the plugin was NOT recording audio (default 3 min)

Features description for [PHONE_CONVERSATION][PROVIDERS][RAPIDS]:

Feature	Units	Description
————————–	———-	—————————
minutessilence	minutes	Minutes labeled as silence
minutesnoise	minutes	Minutes labeled as noise
minutesvoice	minutes	Minutes labeled as voice
minutesunknown	minutes	Minutes labeled as unknown
sumconversationduration	minutes	Total duration of all conversations
maxconversationduration	minutes	Longest duration of all conversations
minconversationduration	minutes	Shortest duration of all conversations
avgconversationduration	minutes	Average duration of all conversations
sdconversationduration	minutes	Standard Deviation of the duration of all conversations
timefirstconversation	minutes	Minutes since midnight when the first conversation for a time segment was detected
timelastconversation	minutes	Minutes since midnight when the last conversation for a time segment was detected
noisesumenergy	L2-norm	Sum of all energy values when inference is noise
noiseavgenergy	L2-norm	Average of all energy values when inference is noise
noisesdenergy	L2-norm	Standard Deviation of all energy values when inference is noise
noiseminenergy	L2-norm	Minimum of all energy values when inference is noise
noisemaxenergy	L2-norm	Maximum of all energy values when inference is noise
voicesumenergy	L2-norm	Sum of all energy values when inference is voice
voiceavgenergy	L2-norm	Average of all energy values when inference is voice
voicesdenergy	L2-norm	Standard Deviation of all energy values when inference is voice
voiceminenergy	L2-norm	Minimum of all energy values when inference is voice
voicemaxenergy	L2-norm	Maximum of all energy values when inference is voice
silencesensedfraction	-	Ratio between minutessilence and the sum of (minutessilence, minutesnoise, minutesvoice, minutesunknown)
noisesensedfraction	-	Ratio between minutesnoise and the sum of (minutessilence, minutesnoise, minutesvoice, minutesunknown)
voicesensedfraction	-	Ratio between minutesvoice and the sum of (minutessilence, minutesnoise, minutesvoice, minutesunknown)
unknownsensedfraction	-	Ratio between minutesunknown and the sum of (minutessilence, minutesnoise, minutesvoice, minutesunknown)
silenceexpectedfraction	-	Ration between minutessilence and the number of minutes that in theory should have been sensed based on the record and pause cycle of the plugin (1440 / recordingMinutes+pausedMinutes)
noiseexpectedfraction	-	Ration between minutesnoise and the number of minutes that in theory should have been sensed based on the record and pause cycle of the plugin (1440 / recordingMinutes+pausedMinutes)
voiceexpectedfraction	-	Ration between minutesvoice and the number of minutes that in theory should have been sensed based on the record and pause cycle of the plugin (1440 / recordingMinutes+pausedMinutes)
unknownexpectedfraction	-	Ration between minutesunknown and the number of minutes that in theory should have been sensed based on the record and pause cycle of the plugin (1440 / recordingMinutes+pausedMinutes)

!!! note “Assumptions/Observations”
1. The timestamp of conversation rows in iOS is in seconds so we convert it to milliseconds to match Android’s format

Phone Data Yield

This is a combinatorial sensor which means that we use the data from multiple sensors to extract data yield features. Data yield features can be used to remove rows (time segments) that do not contain enough data. You should decide what is your “enough” threshold depending on the type of sensors you collected (frequency vs event based, e.g. acceleroemter vs calls), the length of your study, and the rates of missing data that your analysis could handle.

!!! hint “Why is data yield important?”
Imagine that you want to extract PHONE_CALL features on daily segments (00:00 to 23:59). Let’s say that on day 1 the phone logged 10 calls and 23 hours of data from other sensors and on day 2 the phone logged 10 calls and only 2 hours of data from other sensors. It’s more likely that other calls were placed on the 22 hours of data that you didn’t log on day 2 than on the 1 hour of data you didn’t log on day 1, and so including day 2 in your analysis could bias your results.

Sensor parameters description for [PHONE_DATA_YIELD]:

|Key | Description |
|—————-|———–
|[SENSORS]| One or more phone sensor config keys (e.g. PHONE_MESSAGE). The more keys you include the more accurately RAPIDS can approximate the time an smartphone was sensing data. The supported phone sensors you can include in this list are outlined below (do NOT include Fitbit sensors, ONLY include phone sensors).

!!! info “Supported phone sensors for [PHONE_DATA_YIELD][SENSORS]”
yaml PHONE_ACCELEROMETER PHONE_ACTIVITY_RECOGNITION PHONE_APPLICATIONS_CRASHES PHONE_APPLICATIONS_FOREGROUND PHONE_APPLICATIONS_NOTIFICATIONS PHONE_BATTERY PHONE_BLUETOOTH PHONE_CALLS PHONE_CONVERSATION PHONE_KEYBOARD PHONE_LIGHT PHONE_LOCATIONS PHONE_LOG PHONE_MESSAGES PHONE_SCREEN PHONE_WIFI_CONNECTED PHONE_WIFI_VISIBLE

RAPIDS provider

Before explaining the data yield features, let’s define the following relevant concepts:

	A valid minute is any 60 second window when any phone sensor logged at least 1 row of data

	A valid hour is any 60 minute window with at least X valid minutes. The X or threshold is given by [MINUTE_RATIO_THRESHOLD_FOR_VALID_YIELDED_HOURS]

The timestamps of all sensors are concatenated and then grouped per time segment. Minute and hour windows are created from the beginning of each time segment instance and these windows are marked as valid based on the definitions above. The duration of each time segment is taken into account to compute the features described below.

!!! info “Available time segments and platforms”
- Available for all time segments
- Available for Android and iOS

!!! info “File Sequence”
bash - data/raw/{pid}/{sensor}_raw.csv # one for every [PHONE_DATA_YIELD][SENSORS] - data/interim/{pid}/phone_yielded_timestamps.csv - data/interim/{pid}/phone_yielded_timestamps_with_datetime.csv - data/interim/{pid}/phone_data_yield_features/phone_data_yield_{language}_{provider_key}.csv - data/processed/features/{pid}/phone_data_yield.csv

Parameters description for [PHONE_DATA_YIELD][PROVIDERS][RAPIDS]:

|Key | Description |
|—————-|———–
|[COMPUTE]| Set to True to extract PHONE_DATA_YIELD features from the RAPIDS provider|
|[FEATURES] | Features to be computed, see table below
|[MINUTE_RATIO_THRESHOLD_FOR_VALID_YIELDED_HOURS] | The proportion [0.0 ,1.0] of valid minutes in a 60-minute window necessary to flag that window as valid.

Features description for [PHONE_DATA_YIELD][PROVIDERS][RAPIDS]:

|Feature |Units |Description|
|————————– |———- |—————————|
|ratiovalidyieldedminutes |- | The ratio between the number of valid minutes and the duration in minutes of a time segment.
|ratiovalidyieldedhours |- | The ratio between the number of valid hours and the duration in hours of a time segment. If the time segment is shorter than 1 hour this feature will always be 1.

!!! note “Assumptions/Observations”
1. We recommend using ratiovalidyieldedminutes on time segments that are shorter than two or three hours and ratiovalidyieldedhours for longer segments. This is because relying on yielded minutes only can be misleading when a big chunk of those missing minutes are clustered together.

 For example, let's assume we are working with a 24-hour time segment that is missing 12 hours of data. Two extreme cases can occur:

 <ol type="A">
 the 12 missing hours are from the beginning of the segment or
 30 minutes could be missing from every hour (24 * 30 minutes = 12 hours).

 `ratiovalidyieldedminutes` would be 0.5 for both `a` and `b` (hinting the missing circumstances are similar). However, `ratiovalidyieldedhours` would be 0.5 for `a` and 1.0 for `b` if `[MINUTE_RATIO_THRESHOLD_FOR_VALID_YIELDED_HOURS]` is between [0.0 and 0.49] (hinting that the missing circumstances might be more favorable for `b`. In other words, sensed data for `b` is more evenly spread compared to `a`.

Phone Keyboard

Sensor parameters description for [PHONE_KEYBOARD]:

|Key | Description |
|—————-|———–
|[CONTAINER]| Data stream container (database table, CSV file, etc.) where the keyboard data is stored

RAPIDS provider

!!! info “Available time segments and platforms”
- Available for all time segments
- Available for Android only

!!! info “File Sequence”
bash - data/raw/{pid}/phone_keyboard_raw.csv - data/raw/{pid}/phone_keyboard_with_datetime.csv - data/interim/{pid}/phone_keyboard_features/phone_keyboard_{language}_{provider_key}.csv - data/processed/features/{pid}/phone_keyboard.csv

Parameters description for [PHONE_KEYBOARD][PROVIDERS][RAPIDS]:

|Key | Description |
|—————-|———–
|[COMPUTE] | Set to True to extract PHONE_KEYBOARD features from the RAPIDS provider|
|[FEATURES] | Features to be computed, see table below
|[TYPING_SESSION_DURATION] | Minimum seconds to detect the end of a typing session. A session begins with any keypress and finishes until TYPING_SESSION_DURATION seconds (by default, 5 seconds) have elapsed since the last key was pressed or the application that the user was typing on changes.

Features description for [PHONE_KEYBOARD][PROVIDERS][RAPIDS]:

|Feature |Units |Description|
|————————– |———- |—————————|
|sessioncount | - |Number of typing sessions in a time segment. Type sesssions are detected based on TYPING_SESSION_DURATION parameter.
|averagesessionlength | milliseconds | Average length of all sessions in a time segment instance
|averageinterkeydelay |milliseconds |The average time between keystrokes measured in milliseconds.
|changeintextlengthlessthanminusone | | Number of times a keyboard typing or swiping event changed the length of the current text to less than one fewer character.
|changeintextlengthequaltominusone | | Number of times a keyboard typing or swiping event changed the length of the current text in exactly one fewer character.
|changeintextlengthequaltoone | | Number of times a keyboard typing or swiping event changed the length of the current text in exactly one more character.
|changeintextlengthmorethanone | | Number of times a keyboard typing or swiping event changed the length of the current text to more than one character.
|maxtextlength | | Length in characters of the longest sentence(s) contained in the typing text box of any app during the time segment.
|lastmessagelength | | Length of the last text in characters of the sentence(s) contained in the typing text box of any app during the time segment.
|totalkeyboardtouches | | Average number of typing events across all sessions in a time segment instance.

!!! note
1. We did not find a reliable way to distinguish between AutoCorrect or AutoComplete changes, since both can be applied with a single touch or swipe event and can decrease or increase the length of the text by an arbitrary number of characters.
2. The default value (5 seconds) of TYPING_SESSION_DURATION parameter is based on empirical tests with our datasets. It could be updated as needed. Vesel et al. (check this paper [https://academic.oup.com/jamia/article/27/7/1007/5848291]) used 8 seconds instead.

Phone Light

Sensor parameters description for [PHONE_LIGHT]:

|Key | Description |
|—————-|———–
|[CONTAINER]| Data stream container (database table, CSV file, etc.) where the light data is stored

RAPIDS provider

!!! info “Available time segments and platforms”
- Available for all time segments
- Available for Android only

!!! info “File Sequence”
bash - data/raw/{pid}/phone_light_raw.csv - data/raw/{pid}/phone_light_with_datetime.csv - data/interim/{pid}/phone_light_features/phone_light_{language}_{provider_key}.csv - data/processed/features/{pid}/phone_light.csv

Parameters description for [PHONE_LIGHT][PROVIDERS][RAPIDS]:

|Key | Description |
|—————-|———–
|[COMPUTE]| Set to True to extract PHONE_LIGHT features from the RAPIDS provider|
|[FEATURES] | Features to be computed, see table below

Features description for [PHONE_LIGHT][PROVIDERS][RAPIDS]:

|Feature |Units |Description|
|————————– |———- |—————————|
|count |rows | Number light sensor rows recorded.
|maxlux |lux | The maximum ambient luminance.
|minlux |lux | The minimum ambient luminance.
|avglux |lux | The average ambient luminance.
|medianlux |lux | The median ambient luminance.
|stdlux |lux | The standard deviation of ambient luminance.

!!! note “Assumptions/Observations”
NA

Phone Locations

Sensor parameters description for [PHONE_LOCATIONS]:

|Key | Description |
|—————-|———–
|[CONTAINER]| Data stream container (database table, CSV file, etc.) where the location data is stored
|[LOCATIONS_TO_USE]| Type of location data to use, one of ALL, GPS, ALL_RESAMPLED or FUSED_RESAMPLED. This filter is based on the provider column of the locations table, ALL includes every row, GPS only includes rows where the provider is gps, ALL_RESAMPLED includes all rows after being resampled, and FUSED_RESAMPLED only includes rows where the provider is fused after being resampled.
|[FUSED_RESAMPLED_CONSECUTIVE_THRESHOLD]| If ALL_RESAMPLED or FUSED_RESAMPLED is used, the original fused data has to be resampled. A location row is resampled to the next valid timestamp (see the Assumptions/Observations below) only if the time difference between them is less or equal than this threshold (in minutes).
|[FUSED_RESAMPLED_TIME_SINCE_VALID_LOCATION]| If ALL_RESAMPLED or FUSED_RESAMPLED is used, the original fused data has to be resampled. A location row is resampled at most for this long (in minutes).
|[ACCURACY_LIMIT] | An integer in meters, any location rows with an accuracy higher or equal than this is dropped. This number means there’s a 68% probability the actual location is within this radius.

!!! note “Assumptions/Observations”
Types of location data to use
Android and iOS clients can collect location coordinates through the phone’s GPS, the network cellular towers around the phone, or Google’s fused location API.

- If you want to use only the GPS provider, set `[LOCATIONS_TO_USE]` to `GPS`
- If you want to use all providers, set `[LOCATIONS_TO_USE]` to `ALL`
- If you collected location data from different providers, including the fused API, use `ALL_RESAMPLED`
- If your mobile client was configured to use fused location only or want to focus only on this provider, set `[LOCATIONS_TO_USE]` to `FUSED_RESAMPLED`.

`ALL_RESAMPLED` and `FUSED_RESAMPLED` take the original location coordinates and replicate each pair forward in time as long as the phone was sensing data as indicated by the joined timestamps of [`[PHONE_DATA_YIELD][SENSORS]`](../phone-data-yield/). This is done because Google's API only logs a new location coordinate pair when it is sufficiently different in time or space from the previous one and because GPS and network providers can log data at variable rates.

There are two parameters associated with resampling fused location.

1. `FUSED_RESAMPLED_CONSECUTIVE_THRESHOLD` (in minutes, default 30) controls the maximum gap between any two coordinate pairs to replicate the last known pair. For example, participant A's phone did not collect data between 10.30 am and 10:50 am and between 11:05am and 11:40am, the last known coordinate pair is replicated during the first period but not the second. In other words, we assume that we cannot longer guarantee the participant stayed at the last known location if the phone did not sense data for more than 30 minutes.
2. `FUSED_RESAMPLED_TIME_SINCE_VALID_LOCATION` (in minutes, default 720 or 12 hours) stops the last known fused location from being replicated longer than this threshold even if the phone was sensing data continuously. For example, participant A went home at 9 pm, and their phone was sensing data without gaps until 11 am the next morning, the last known location is replicated until 9 am.

If you have suggestions to modify or improve this resampling, let us know.

BARNETT provider

These features are based on the original open-source implementation by Barnett et al and some features created by Canzian et al.

!!! info “Available time segments and platforms”
- Available only for segments that start at 00:00:00 and end at 23:59:59 of the same or a different day (daily, weekly, weekend, etc.)
- Available for Android and iOS

!!! info “File Sequence”
bash - data/raw/{pid}/phone_locations_raw.csv - data/interim/{pid}/phone_locations_processed.csv - data/interim/{pid}/phone_locations_processed_with_datetime.csv - data/interim/{pid}/phone_locations_barnett_daily.csv - data/interim/{pid}/phone_locations_features/phone_locations_{language}_{provider_key}.csv - data/processed/features/{pid}/phone_locations.csv

Parameters description for [PHONE_LOCATIONS][PROVIDERS][BARNETT]:

|Key | Description |
|—————-|———–
|[COMPUTE]| Set to True to extract PHONE_LOCATIONS features from the BARNETT provider|
|[FEATURES] | Features to be computed, see table below
|[IF_MULTIPLE_TIMEZONES] | Currently, USE_MOST_COMMON is the only value supported. If the location data for a participant belongs to multiple time zones, we select the most common because Barnett’s algorithm can only handle one time zone
|[MINUTES_DATA_USED] | Set to True to include an extra column in the final location feature file containing the number of minutes used to compute the features on each time segment. Use this for quality control purposes; the more data minutes exist for a period, the more reliable its features should be. For fused location, a single minute can contain more than one coordinate pair if the participant is moving fast enough.

Features description for [PHONE_LOCATIONS][PROVIDERS][BARNETT] adapted from Beiwe Summary Statistics [http://wiki.beiwe.org/wiki/Summary_Statistics]:

|Feature |Units |Description|
|————————– |———- |—————————|
|hometime |minutes | Time at home. Time spent at home in minutes. Home is the most visited significant location between 8 pm and 8 am, including any pauses within a 200-meter radius.
|disttravelled |meters | Total distance traveled over a day (flights).
|rog |meters | The Radius of Gyration (rog) is a measure in meters of the area covered by a person over a day. A centroid is calculated for all the places (pauses) visited during a day, and a weighted distance between all the places and that centroid is computed. The weights are proportional to the time spent in each place.
|maxdiam |meters | The maximum diameter is the largest distance between any two pauses.
|maxhomedist |meters | The maximum distance from home in meters.
|siglocsvisited |locations | The number of significant locations visited during the day. Significant locations are computed using k-means clustering over pauses found in the whole monitoring period. The number of clusters is found iterating k from 1 to 200 stopping until the centroids of two significant locations are within 400 meters of one another.
|avgflightlen |meters | Mean length of all flights.
|stdflightlen |meters | Standard deviation of the length of all flights.
|avgflightdur |seconds | Mean duration of all flights.
|stdflightdur |seconds | The standard deviation of the duration of all flights.
|probpause | - | The fraction of a day spent in a pause (as opposed to a flight)
|siglocentropy |nats | Shannon’s entropy measurement is based on the proportion of time spent at each significant location visited during a day.
|circdnrtn | - | A continuous metric quantifying a person’s circadian routine that can take any value between 0 and 1, where 0 represents a daily routine completely different from any other sensed days and 1 a routine the same as every other sensed day.
|wkenddayrtn | - | Same as circdnrtn but computed separately for weekends and weekdays.

!!! note “Assumptions/Observations”
Multi day segment features
Barnett’s features are only available on time segments that span entire days (00:00:00 to 23:59:59). Such segments can be one-day long (daily) or multi-day (weekly, for example). Multi-day segment features are computed based on daily features summarized the following way:

- sum for `hometime`, `disttravelled`, `siglocsvisited`, and `minutes_data_used`
- max for `maxdiam`, and `maxhomedist`
- mean for `rog`, `avgflightlen`, `stdflightlen`, `avgflightdur`, `stdflightdur`, `probpause`, `siglocentropy`, `circdnrtn`, `wkenddayrtn`, and `minsmissing`

Computation speed
The process to extract these features can be slow compared to other sensors and providers due to the required simulation.

How are these features computed?
These features are based on a Pause-Flight model. A pause is defined as a mobility trace (location pings) within a certain duration and distance (by default, 300 seconds and 60 meters). A flight is any mobility trace between two pauses. Data is resampled and imputed before the features are computed. See [Barnett et al](../../citation#barnett-locations) for more information. In RAPIDS, we only expose one parameter for these features (accuracy limit). You can change other parameters in `src/features/phone_locations/barnett/library/MobilityFeatures.R`.

Significant Locations
Significant locations are determined using K-means clustering on pauses longer than 10 minutes. The number of clusters (K) is increased until no two clusters are within 400 meters from each other. After this, pauses within a certain range of a cluster (200 meters by default) count as a visit to that significant location. This description was adapted from the Supplementary Materials of [Barnett et al](../../citation#barnett-locations).

The Circadian Calculation
For a detailed description of how this is calculated, see [Canzian et al](../../citation#barnett-locations).

DORYAB provider

These features are based on the original implementation by Doryab et al..

!!! info “Available time segments and platforms”
- Available for all time segments
- Available for Android and iOS

!!! info “File Sequence”
bash - data/raw/{pid}/phone_locations_raw.csv - data/interim/{pid}/phone_locations_processed.csv - data/interim/{pid}/phone_locations_processed_with_datetime.csv - data/interim/{pid}/phone_locations_processed_with_datetime_with_doryab_columns_episodes.csv - data/interim/{pid}/phone_locations_processed_with_datetime_with_doryab_columns_episodes_resampled.csv - data/interim/{pid}/phone_locations_processed_with_datetime_with_doryab_columns_episodes_resampled_with_datetime.csv - data/interim/{pid}/phone_locations_features/phone_locations_{language}_{provider_key}.csv - data/processed/features/{pid}/phone_locations.csv

Parameters description for [PHONE_LOCATIONS][PROVIDERS][DORYAB]:

|Key | Description |
|—————-|———–
|[COMPUTE]| Set to True to extract PHONE_LOCATIONS features from the DORYAB provider|
|[FEATURES] | Features to be computed, see table below
| [DBSCAN_EPS] | The maximum distance in meters between two samples for one to be considered as in the neighborhood of the other. This is not a maximum bound on the distances of points within a cluster. This is the most important DBSCAN parameter to choose appropriately for your data set and distance function.
| [DBSCAN_MINSAMPLES] | The number of samples (or total weight) in a neighborhood for a point to be considered as a core point of a cluster. This includes the point itself.
| [THRESHOLD_STATIC] | It is the threshold value in km/hr which labels a row as Static or Moving.
| [MAXIMUM_ROW_GAP] | The maximum gap (in seconds) allowed between any two consecutive rows for them to be considered part of the same displacement. If this threshold is too high, it can throw speed and distance calculations off for periods when the phone was not sensing. This value must be larger than your GPS sampling interval when [LOCATIONS_TO_USE] is ALL or GPS, otherwise all the stationary-related features will be NA. If [LOCATIONS_TO_USE] is ALL_RESAMPLED or FUSED_RESAMPLED, you can use the default value as every row will be resampled at 1-minute intervals.
| [MINUTES_DATA_USED] | Set to True to include an extra column in the final location feature file containing the number of minutes used to compute the features on each time segment. Use this for quality control purposes; the more data minutes exist for a period, the more reliable its features should be. For fused location, a single minute can contain more than one coordinate pair if the participant is moving fast enough.
| [CLUSTER_ON] | Set this flag to PARTICIPANT_DATASET to create clusters based on the entire participant’s dataset or to TIME_SEGMENT to create clusters based on all the instances of the corresponding time segment (e.g. all mornings) or to TIME_SEGMENT_INSTANCE to create clusters based on a single instance (e.g. 2020-05-20’s morning).
|[INFER_HOME_LOCATION_STRATEGY] | The strategy applied to infer home locations. Set to DORYAB_STRATEGY to infer one home location for the entire dataset of each participant or to SUN_LI_VEGA_STRATEGY to infer one home location per day per participant. See Observations below to know more.
|[MINIMUM_DAYS_TO_DETECT_HOME_CHANGES] | The minimum number of consecutive days a new home location candidate has to repeat before it is considered the participant’s new home. This parameter will be used only when [INFER_HOME_LOCATION_STRATEGY] is set to SUN_LI_VEGA_STRATEGY.
| [CLUSTERING_ALGORITHM] | The original Doryab et al. implementation uses DBSCAN, OPTICS is also available with similar (but not identical) clustering results and lower memory consumption.
| [RADIUS_FOR_HOME] | All location coordinates within this distance (meters) from the home location coordinates are considered a homestay (see timeathome feature).

Features description for [PHONE_LOCATIONS][PROVIDERS][DORYAB]:

|Feature |Units |Description|
|————————– |———- |—————————|
|locationvariance |$meters^2$ |The sum of the variances of the latitude and longitude columns.
|loglocationvariance | - | Log of the sum of the variances of the latitude and longitude columns.
|totaldistance |meters |Total distance traveled in a time segment using the haversine formula.
|avgspeed |km/hr |Average speed in a time segment considering only the instances labeled as Moving. This feature is 0 when the participant is stationary during a time segment.
|varspeed |km/hr |Speed variance in a time segment considering only the instances labeled as Moving. This feature is 0 when the participant is stationary during a time segment.
|{–circadianmovement–} |- | Deprecated, see Observations below. \ “It encodes the extent to which a person’s location patterns follow a 24-hour circadian cycle.” Doryab et al..
|numberofsignificantplaces |places |Number of significant locations visited. It is calculated using the DBSCAN/OPTICS clustering algorithm which takes in EPS and MIN_SAMPLES as parameters to identify clusters. Each cluster is a significant place.
|numberlocationtransitions |transitions |Number of movements between any two clusters in a time segment.
|radiusgyration |meters |Quantifies the area covered by a participant
|timeattop1location |minutes |Time spent at the most significant location.
|timeattop2location |minutes |Time spent at the 2nd most significant location.
|timeattop3location |minutes |Time spent at the 3rd most significant location.
|movingtostaticratio | - | Ratio between stationary time and total location sensed time. A lat/long coordinate pair is labeled as stationary if its speed (distance/time) to the next coordinate pair is less than 1km/hr. A higher value represents a more stationary routine.
|outlierstimepercent | - | Ratio between the time spent in non-significant clusters divided by the time spent in all clusters (stationary time. Only stationary samples are clustered). A higher value represents more time spent in non-significant clusters.
|maxlengthstayatclusters |minutes |Maximum time spent in a cluster (significant location).
|minlengthstayatclusters |minutes |Minimum time spent in a cluster (significant location).
|avglengthstayatclusters |minutes |Average time spent in a cluster (significant location).
|stdlengthstayatclusters |minutes |Standard deviation of time spent in a cluster (significant location).
|locationentropy |nats |Shannon Entropy computed over the row count of each cluster (significant location), it is higher the more rows belong to a cluster (i.e., the more time a participant spent at a significant location).
|normalizedlocationentropy |nats |Shannon Entropy computed over the row count of each cluster (significant location) divided by the number of clusters; it is higher the more rows belong to a cluster (i.e., the more time a participant spent at a significant location).
|timeathome |minutes | Time spent at home (see Observations below for a description on how we compute home).
|homelabel |- | An integer that represents a different home location. It will be a constant number (1) for all participants when [INFER_HOME_LOCATION_STRATEGY] is set to DORYAB_STRATEGY or an incremental index if the strategy is set to SUN_LI_VEGA_STRATEGY.

!!! note “Assumptions/Observations”
Significant Locations Identified
Significant locations are determined using DBSCAN or OPTICS clustering on locations that a participant visited over the course of the period of data collection. The most significant location is the place where the participant stayed for the longest time.

Circadian Movement Calculation
Note Feb 3 2021. It seems the implementation of this feature is not correct; we suggest not to use this feature until a fix is in place. For a detailed description of how this should be calculated, see [Saeb et al](https://pubmed.ncbi.nlm.nih.gov/28344895/).

Fine-Tuning Clustering Parameters
Based on an experiment where we collected fused location data for 7 days with a mean accuracy of 86 & SD of 350.874635, we determined that `EPS/MAX_EPS`=100 produced closer clustering results to reality. Higher values (>100) missed out on some significant places, like a short grocery visit, while lower values (<100) picked up traffic lights and stop signs while driving as significant locations. We recommend you set `EPS` based on your location data's accuracy (the more accurate your data is, the lower you should be able to set EPS).

Duration Calculation
To calculate the time duration component for our features, we compute the difference between consecutive rows' timestamps to take into account sampling rate variability. If this time difference is larger than a threshold (300 seconds by default), we replace it with NA and label that row as Moving.

Home location

- `DORYAB_STRATEGY`: home is calculated using all location data of a participant between 12 am and 6 am, then applying a clustering algorithm (`DBSCAN` or `OPTICS`) and considering the center of the biggest cluster home for that participant.

- `SUN_LI_VEGA_STRATEGY`: home is calculated using all location data of a participant between 12 am and 6 am, then applying a clustering algorithm (`DBSCAN` or `OPTICS`). The following steps are used to infer the home location per day for that participant:

 1. if there are records within [03:30:00, 04:30:00] for that night:

 we choose the most common cluster during that period as a home candidate for that day.

 elif there are records within [midnight, 03:30:00) for that night:

 we choose the last valid cluster during that period as a home candidate for that day.

 elif there are records within (04:30:00, 06:00:00] for that night:

 we choose the first valid cluster during that period as a home candidate for that day.

 else:

 the home location is NA (missing) for that day.

 2. If the count of consecutive days with the same candidate home location cluster label is larger or equal to `[MINIMUM_DAYS_TO_DETECT_HOME_CHANGES]`,
 the candidate will be regarded as the home cluster; otherwise, the home cluster will be the last valid day's cluster.
 If there are no valid clusters before that day, the first home location in the days after is used.

Clustering algorithms
[`DBSCAN`](https://scikit-learn.org/stable/modules/generated/sklearn.cluster.DBSCAN.html) and [`OPTICS`](https://scikit-learn.org/stable/modules/generated/sklearn.cluster.OPTICS.html#r2c55e37003fe-1) algorithms are available currently. Duplicated locations are discarded while clustering. The `DBSCAN` algorithm takes the time spent at each location into consideration. However, the `OPTICS` algorithm ignores it as it is not supported in the current [scikit-learn](https://github.com/scikit-learn/scikit-learn/issues/12394) implementation.

Phone Log

Sensor parameters description for [PHONE_LOG]:

|Key | Description |
|—————-|———–
|[CONTAINER][ANDROID]| Data stream container (database table, CSV file, etc.) where a data log is stored for Android devices
|[CONTAINER][IOS]| Data stream container (database table, CSV file, etc.) where a data log is stored for iOS devices

!!! note
No feature providers have been implemented for this sensor yet, however you can use its key (PHONE_LOG) to improve PHONE_DATA_YIELD or you can implement your own features.

Phone Messages

Sensor parameters description for [PHONE_MESSAGES]:

|Key | Description |
|—————-|———–
|[CONTAINER]| Data stream container (database table, CSV file, etc.) where the messages data is stored

RAPIDS provider

!!! info “Available time segments and platforms”
- Available for all time segments
- Available for Android only

!!! info “File Sequence”
bash - data/raw/{pid}/phone_messages_raw.csv - data/raw/{pid}/phone_messages_with_datetime.csv - data/interim/{pid}/phone_messages_features/phone_messages_{language}_{provider_key}.csv - data/processed/features/{pid}/phone_messages.csv

Parameters description for [PHONE_MESSAGES][PROVIDERS][RAPIDS]:

|Key | Description |
|—————-|———–
|[COMPUTE]| Set to True to extract PHONE_MESSAGES features from the RAPIDS provider|
|[MESSAGES_TYPES] | The messages_type that will be analyzed. The options for this parameter are received or sent.
|[FEATURES] | Features to be computed, see table below for [MESSAGES_TYPES] received and sent

Features description for [PHONE_MESSAGES][PROVIDERS][RAPIDS]:

|Feature |Units |Description|
|————————– |———- |—————————|
|count |messages |Number of messages of type messages_type that occurred during a particular time_segment.
|distinctcontacts |contacts |Number of distinct contacts that are associated with a particular messages_type during a particular time_segment.
|timefirstmessages |minutes |Number of minutes between 12:00am (midnight) and the first message of a particular messages_type during a particular time_segment.
|timelastmessages |minutes |Number of minutes between 12:00am (midnight) and the last message of a particular messages_type during a particular time_segment.
|countmostfrequentcontact |messages |Number of messages from the contact with the most messages of messages_type during a time_segment throughout the whole dataset of each participant.

!!! note “Assumptions/Observations”
1. [MESSAGES_TYPES] and [FEATURES] keys in config.yaml need to match. For example, [MESSAGES_TYPES] sent matches the [FEATURES] key sent

Phone Screen

Sensor parameters description for [PHONE_SCREEN]:

|Key | Description |
|—————-|———–
|[CONTAINER]| Data stream container (database table, CSV file, etc.) where the screen data is stored

RAPIDS provider

!!! info “Available time segments and platforms”
- Available for all time segments
- Available for Android and iOS

!!! info “File Sequence”
bash - data/raw/{pid}/phone_screen_raw.csv - data/raw/{pid}/phone_screen_with_datetime.csv - data/interim/{pid}/phone_screen_episodes.csv - data/interim/{pid}/phone_screen_episodes_resampled.csv - data/interim/{pid}/phone_screen_episodes_resampled_with_datetime.csv - data/interim/{pid}/phone_screen_features/phone_screen_{language}_{provider_key}.csv - data/processed/features/{pid}/phone_screen.csv

Parameters description for [PHONE_SCREEN][PROVIDERS][RAPIDS]:

|Key | Description |
|—————-|———–
|[COMPUTE]| Set to True to extract PHONE_SCREEN features from the RAPIDS provider|
|[FEATURES] | Features to be computed, see table below
|[REFERENCE_HOUR_FIRST_USE] | The reference point from which firstuseafter is to be computed, default is midnight
|[IGNORE_EPISODES_SHORTER_THAN] | Ignore episodes that are shorter than this threshold (minutes). Set to 0 to disable this filter.
|[IGNORE_EPISODES_LONGER_THAN] | Ignore episodes that are longer than this threshold (minutes), default is 6 hours. Set to 0 to disable this filter.
|[EPISODE_TYPES] | Currently we only support unlock episodes (from when the phone is unlocked until the screen is off)

Features description for [PHONE_SCREEN][PROVIDERS][RAPIDS]:

|Feature |Units |Description|
|————————– |———- |—————————|
|sumduration |minutes |Total duration of all unlock episodes.
|maxduration |minutes |Longest duration of any unlock episode.
|minduration |minutes |Shortest duration of any unlock episode.
|avgduration |minutes |Average duration of all unlock episodes.
|stdduration |minutes |Standard deviation duration of all unlock episodes.
|countepisode |episodes |Number of all unlock episodes
|firstuseafter |minutes |Minutes until the first unlock episode.

!!! note “Assumptions/Observations”
1. In Android, lock events can happen right after an off event, after a few seconds of an off event, or never happen depending on the phone’s settings, therefore, an unlock episode is defined as the time between an unlock and a off event. In iOS, on and off events do not exist, so an unlock episode is defined as the time between an unlock and a lock event.

2. Events in iOS are recorded reliably albeit some duplicated `lock` events within milliseconds from each other, so we only keep consecutive unlock/lock pairs. In Android you cand find multiple consecutive `unlock` or `lock` events, so we only keep consecutive unlock/off pairs. In our experiments these cases are less than 10% of the screen events collected and this happens because `ACTION_SCREEN_OFF` and `ACTION_SCREEN_ON` are `sent when the device becomes non-interactive which may have nothing to do with the screen turning off`. In addition to unlock/off episodes, in Android it is possible to measure the time spent on the lock screen before an `unlock` event as well as the total screen time (i.e. `ON` to `OFF`) but these are not implemented at the moment.

3. We transform iOS screen events to match Android's format, we replace `lock` episodes with `off` episodes (2 with 0) in iOS. However, as mentioned above this is still computing `unlock` to `lock` episodes.

Phone WiFi Connected

Sensor parameters description for [PHONE_WIFI_CONNECTED]:

|Key | Description |
|—————-|———–
|[CONTAINER]| Data stream container (database table, CSV file, etc.) where the wifi (connected) data is stored

RAPIDS provider

!!! info “Available time segments and platforms”
- Available for all time segments
- Available for Android and iOS

!!! info “File Sequence”
bash - data/raw/{pid}/phone_wifi_connected_raw.csv - data/raw/{pid}/phone_wifi_connected_with_datetime.csv - data/interim/{pid}/phone_wifi_connected_features/phone_wifi_connected_{language}_{provider_key}.csv - data/processed/features/{pid}/phone_wifi_connected.csv

Parameters description for [PHONE_WIFI_CONNECTED][PROVIDERS][RAPIDS]:

|Key | Description |
|—————-|———–
|[COMPUTE]| Set to True to extract PHONE_WIFI_CONNECTED features from the RAPIDS provider|
|[FEATURES] | Features to be computed, see table below

Features description for [PHONE_WIFI_CONNECTED][PROVIDERS][RAPIDS]:

Feature	Units	Description
————————–	———-	—————————
countscans	scans	Number of scanned WiFi access points connected (i.e., connected devices) during a time_segment, an access point can be detected multiple times over time and these appearances are counted separately
uniquedevices	devices	Number of unique connected device during a time_segment as identified by their hardware address
countscansmostuniquedevice	scans	Number of scans of the most scanned connected device during a time_segment across the whole monitoring period

!!! note “Assumptions/Observations”
1. A connected WiFI access point is one that a phone was connected to.
2. By default AWARE stores this data in the sensor_wifi table.

Phone WiFi Visible

Sensor parameters description for [PHONE_WIFI_VISIBLE]:

|Key | Description |
|—————-|———–
|[CONTAINER]| Data stream container (database table, CSV file, etc.) where the wifi (visible) data is stored

RAPIDS provider

!!! info “Available time segments and platforms”
- Available for all time segments
- Available for Android only

!!! info “File Sequence”
bash - data/raw/{pid}/phone_wifi_visible_raw.csv - data/raw/{pid}/phone_wifi_visible_with_datetime.csv - data/interim/{pid}/phone_wifi_visible_features/phone_wifi_visible_{language}_{provider_key}.csv - data/processed/features/{pid}/phone_wifi_visible.csv

Parameters description for [PHONE_WIFI_VISIBLE][PROVIDERS][RAPIDS]:

|Key | Description |
|—————-|———–
|[COMPUTE]| Set to True to extract PHONE_WIFI_VISIBLE features from the RAPIDS provider|
|[FEATURES] | Features to be computed, see table below

Features description for [PHONE_WIFI_VISIBLE][PROVIDERS][RAPIDS]:

Feature	Units	Description
————————–	———-	—————————
countscans	scans	Number of scanned WiFi access points visible (i.e., visible devices) during a time_segment, an access point can be detected multiple times over time and these appearances are counted separately
uniquedevices	devices	Number of unique visible device during a time_segment as identified by their hardware address
countscansmostuniquedevice	scans	Number of scans of the most scanned visible device during a time_segment across the whole monitoring period

!!! note “Assumptions/Observations”
1. A visible WiFI access point is one that a phone sensed around itself but that it was not connected to. Due to API restrictions, this sensor is not available on iOS.
2. By default AWARE stores this data in the wifi table.

Configuration

You need to follow these steps to configure your RAPIDS deployment before you can extract behavioral features.

	Verify RAPIDS can process your data streams

	Create your participants files

	Select what time segments you want to extract features on

	Select the timezone of your study

	Configure your data streams

	Select what sensors and features you want to process

When you are done with this configuration, go to executing RAPIDS.

!!! hint
Every time you see config["KEY"] or [KEY] in these docs, we are referring to the corresponding key in the config.yaml file.

Supported data streams

A data stream refers to sensor data collected using a specific device with a specific format and stored in a specific container. For example, the aware_mysql data stream handles smartphone data (device) collected with the AWARE Framework [https://awareframework.com/] (format) stored in a MySQL database (container).

Check the table in introduction to data streams to know what data streams we support. If your data stream is supported, continue to the next configuration section, you will use its label later in this guide (e.g. aware_mysql). If your steam is not supported, but you want to implement it, follow the tutorial to add support for new data streams and open a new discussion [https://github.com/carissalow/rapids/discussions] in Github with any questions.

Participant files

Participant files link together multiple devices (smartphones and wearables) to specific participants and identify them throughout RAPIDS. You can create these files manually or automatically. Participant files are stored in data/external/participant_files/pxx.yaml and follow a unified structure.

??? important “Remember to modify the config.yaml file with your PIDS”
The list PIDS in config.yaml needs to have the participant file names of the people you want to process. For example, if you created p01.yaml, p02.yaml and p03.yaml files in /data/external/participant_files/ , then PIDS should be:
yaml PIDS: [p01, p02, p03]

??? info “Optional: Migrating participants files with the old format”
If you were using the pre-release version of RAPIDS with participant files in plain text (as opposed to yaml), you could run the following command, and your old files will be converted into yaml files stored in data/external/participant_files/

```bash
python tools/update_format_participant_files.py
```


Structure of participants files

??? example “Example of the structure of a participant file”

In this example, the participant used an android phone, an ios phone, a Fitbit device, and an Empatica device throughout the study between April 23rd, 2020, and October 28th, 2020

 If your participants didn't use a `[PHONE]`, `[FITBIT]` or `[EMPATICA]` device, it is not necessary to include that section in their participant file. In other words, you can analyze data from 1 or more devices per participant.

```yaml
PHONE:
  DEVICE_IDS: [a748ee1a-1d0b-4ae9-9074-279a2b6ba524, dsadas-2324-fgsf-sdwr-gdfgs4rfsdf43]
  PLATFORMS: [android,ios]
  LABEL: test01
  START_DATE: 2020-04-23
  END_DATE: 2020-10-28
FITBIT:
  DEVICE_IDS: [fitbit1]
  LABEL: test01
  START_DATE: 2020-04-23
  END_DATE: 2020-10-28
EMPATICA:
  DEVICE_IDS: [empatica1]
  LABEL: test01
  START_DATE: 2020-04-23
  END_DATE: 2020-10-28
```


=== “[PHONE]”

Key 	Description
`[DEVICE_IDS]`	An array of the strings that uniquely identify each smartphone, you can have more than one for when participants changed phones in the middle of the study.
`[PLATFORMS]`	An array that specifies the OS of each smartphone in `[DEVICE_IDS]` , use a combination of `android` or `ios` (we support participants that changed platforms in the middle of your study!). You can set `[PLATFORMS]: [infer]`, and RAPIDS will infer them automatically (each phone data stream infer this differently, e.g., `aware_mysql` uses the `aware_device` table).
`[LABEL]`	A string that is used in reports and visualizations.
`[START_DATE]`	A string with format `YYYY-MM-DD` or `YYYY-MM-DD HH:MM:SS`. Only data collected *after* this date-time will be included in the analysis. By default, `YYYY-MM-DD` is interpreted as `YYYY-MM-DD 00:00:00`.
`[END_DATE]`	A string with format `YYYY-MM-DD` or `YYYY-MM-DD HH:MM:SS`. Only data collected *before* this date-time will be included in the analysis. By default, `YYYY-MM-DD` is interpreted as `YYYY-MM-DD 00:00:00`.

=== “[FITBIT]”

Key 	Description
`[DEVICE_IDS]`	An array of the strings that uniquely identify each Fitbit, you can have more than one in case the participant changed devices in the middle of the study.
`[LABEL]`	A string that is used in reports and visualizations.
`[START_DATE]`	A string with format `YYYY-MM-DD` or `YYYY-MM-DD HH:MM:SS`. Only data collected *after* this date-time will be included in the analysis. By default, `YYYY-MM-DD` is interpreted as `YYYY-MM-DD 00:00:00`.
`[END_DATE]`	A string with format `YYYY-MM-DD` or `YYYY-MM-DD HH:MM:SS`. Only data collected *before* this date-time will be included in the analysis. By default, `YYYY-MM-DD` is interpreted as `YYYY-MM-DD 00:00:00`.

=== “[EMPATICA]”

Key 	Description
`[DEVICE_IDS]`	An array of the strings that uniquely identify each Empatica device used by this participant. Since the most common use case involves having multiple zip files from a single device for each person, set this device id to an arbitrary string (we usually use their `pid`)
`[LABEL]`	A string that is used in reports and visualizations.
`[START_DATE]`	A string with format `YYYY-MM-DD` or `YYYY-MM-DD HH:MM:SS`. Only data collected *after* this date-time will be included in the analysis. By default, `YYYY-MM-DD` is interpreted as `YYYY-MM-DD 00:00:00`.
`[END_DATE]`	A string with format `YYYY-MM-DD` or `YYYY-MM-DD HH:MM:SS`. Only data collected *before* this date-time will be included in the analysis. By default, `YYYY-MM-DD` is interpreted as `YYYY-MM-DD 00:00:00`.

Automatic creation of participant files

You can use a CSV file with a row per participant to automatically create participant files.

??? “AWARE_DEVICE_TABLE was deprecated”
In previous versions of RAPIDS, you could create participant files automatically using the aware_device table. We deprecated this option, but you can still achieve the same results if you export the output of the following SQL query as a CSV file and follow the instructions below:

```sql
SELECT device_id, device_id as fitbit_id, CONCAT("p", _id) as empatica_id, CONCAT("p", _id) as pid, if(brand = "iPhone", "ios", "android") as platform, CONCAT("p", _id)  as label, DATE_FORMAT(FROM_UNIXTIME((timestamp/1000)- 86400), "%Y-%m-%d") as start_date, CURRENT_DATE as end_date from aware_device order by _id;
```


In your config.yaml:

	Set CSV_FILE_PATH to a CSV file path that complies with the specs described below

	Set the devices (PHONE, FITBIT, EMPATICA) [ADD] flag to TRUE depending on what devices you used in your study.

CREATE_PARTICIPANT_FILES:
 CSV_FILE_PATH: "your_path/to_your.csv"
 PHONE_SECTION:
 ADD: TRUE # or FALSE
 IGNORED_DEVICE_IDS: []
 FITBIT_SECTION:
 ADD: TRUE # or FALSE
 IGNORED_DEVICE_IDS: []
 EMPATICA_SECTION:
 ADD: TRUE # or FALSE
 IGNORED_DEVICE_IDS: []

Your CSV file ([CSV_FILE_PATH]) should have the following columns (headers), but the values within each column can be empty:

Column	Description
——————	———————————————————————————————————–
device_id	Phone device id. Separate multiple ids with ;
fitbit_id	Fitbit device id. Separate multiple ids with ;
empatica_id	Empatica device id. Since the most common use case involves having various zip files from a single device for each person, set this device id to an arbitrary string (we usually use their pid)
pid	Unique identifiers with the format pXXX (your participant files will be named with this string)
platform	Use android, ios or infer as explained above, separate values with ;
label	A human-readable string that is used in reports and visualizations.
start_date	A string with format YYY-MM-DD or YYYY-MM-DD HH:MM:SS. By default, YYYY-MM-DD is interpreted as YYYY-MM-DD 00:00:00.
end_date	A string with format YYY-MM-DD or YYYY-MM-DD HH:MM:SS. By default, YYYY-MM-DD is interpreted as YYYY-MM-DD 00:00:00.

!!! example
We added white spaces to this example to make it easy to read, but you don’t have to.

```csv
device_id                                                                ,fitbit_id, empatica_id ,pid ,label ,platform    ,start_date ,end_date
a748ee1a-1d0b-4ae9-9074-279a2b6ba524;dsadas-2324-fgsf-sdwr-gdfgs4rfsdf43 ,fitbit1  , p01         ,p01 ,julio ,android;ios ,2020-01-01 ,2021-01-01
4c4cf7a1-0340-44bc-be0f-d5053bf7390c                                     ,fitbit2  , p02         ,p02 ,meng  ,ios         ,2021-01-01 ,2022-01-01
```


Then run

snakemake -j1 create_participants_files

Time Segments

Time segments (or epochs) are the time windows on which you want to extract behavioral features. For example, you might want to process data every day, every morning, or only during weekends. RAPIDS offers three categories of time segments that are flexible enough to cover most use cases: frequency (short time windows every day), periodic (arbitrary time windows on any day), and event (arbitrary time windows around events of interest). See also our examples.

=== “Frequency Segments”

These segments are computed every day, and all have the same duration (for example, 30 minutes). Set the following keys in your `config.yaml`

```yaml
TIME_SEGMENTS: &time_segments
  TYPE: FREQUENCY
  FILE: "data/external/your_frequency_segments.csv"
  INCLUDE_PAST_PERIODIC_SEGMENTS: FALSE
```

The file pointed by `[TIME_SEGMENTS][FILE]` should have the following format and only have 1 row.

Column	Description
label	A string that is used as a prefix in the name of your time segments
length	An integer representing the duration of your time segments in minutes

!!! example

    ```csv
    label,length
    thirtyminutes,30
    ```

 This configuration will compute 48 time segments for every day when any data from any participant was sensed. For example:

    ```csv
    start_time,length,label
    00:00,30,thirtyminutes0000
    00:30,30,thirtyminutes0001
    01:00,30,thirtyminutes0002
    01:30,30,thirtyminutes0003
    ...
    ```


=== “Periodic Segments”

These segments can be computed every day or on specific days of the week, month, quarter, and year. Their minimum duration is 1 minute, but they can be as long as you want. Set the following keys in your `config.yaml`.

```yaml
TIME_SEGMENTS: &time_segments
  TYPE: PERIODIC
  FILE: "data/external/your_periodic_segments.csv"
  INCLUDE_PAST_PERIODIC_SEGMENTS: FALSE # or TRUE
```

If `[INCLUDE_PAST_PERIODIC_SEGMENTS]` is set to `TRUE`, RAPIDS will consider instances of your segments back enough in the past to include the first row of data of each participant. For example, if the first row of data from a participant happened on Saturday, March 7th, 2020, and the requested segment duration is 7 days starting on every Sunday, the first segment to be considered would begin on Sunday, March 1st if `[INCLUDE_PAST_PERIODIC_SEGMENTS]` is `TRUE` or on Sunday, March 8th if `FALSE`.

The file pointed by `[TIME_SEGMENTS][FILE]` should have the following format and can have multiple rows.

Column	Description
label	A string that is used as a prefix in the name of your time segments. It has to be **unique** between rows
start_time	A string with format `HH:MM:SS` representing the starting time of this segment on any day
length	A string representing the length of this segment. It can have one or more of the following strings **`XXD XXH XXM XXS`** to represent days, hours, minutes, and seconds. For example, `7D 23H 59M 59S`
repeats_on	One of the following options `every_day`, `wday`, `qday`, `mday`, and `yday`. The last four represent a week, quarter, month, and year day
repeats_value	An integer complementing `repeats_on`. If you set `repeats_on` to `every_day`, set this to `0`, otherwise `1-7` represent a `wday` starting from Mondays, `1-31` represent a `mday`, `1-91` represent a `qday`, and `1-366` represent a `yday`

!!! example

    ```csv
    label,start_time,length,repeats_on,repeats_value
    daily,00:00:00,23H 59M 59S,every_day,0
    morning,06:00:00,5H 59M 59S,every_day,0
    afternoon,12:00:00,5H 59M 59S,every_day,0
    evening,18:00:00,5H 59M 59S,every_day,0
    night,00:00:00,5H 59M 59S,every_day,0
    ```

 This configuration will create five segment instances (`daily`, `morning`, `afternoon`, `evening`, `night`) on any given day (`every_day` set to 0). The `daily` segment will start at midnight and last `23:59:59`; the other four segments will begin at 6am, 12pm, 6pm, and 12am, respectively, and last for `05:59:59`.

=== “Event segments”

These segments can be computed before or after an event of interest (defined as any UNIX timestamp). Their minimum duration is 1 minute, but they can be as long as you want. The start of each segment can be shifted backward or forwards from the specified timestamp. Set the following keys in your `config.yaml`.

```yaml
TIME_SEGMENTS: &time_segments
  TYPE: EVENT
  FILE: "data/external/your_event_segments.csv"
  INCLUDE_PAST_PERIODIC_SEGMENTS: FALSE # or TRUE
```

The file pointed by `[TIME_SEGMENTS][FILE]` should have the following format and can have multiple rows.

Column	Description
label	A string that is used as a prefix in the name of your time segments. If labels are unique, every segment is independent; if two or more segments have the same label, their data will be grouped when computing auxiliary data for features like the `most frequent contact` for calls (the most frequent contact will be calculated across all these segments). There cannot be two *overlapping* event segments with the same label (RAPIDS will throw an error)
event_timestamp	A UNIX timestamp that represents the moment an event of interest happened (clinical relapse, survey, readmission, etc.). The corresponding time segment will be computed around this moment using `length`, `shift`, and `shift_direction`
length	A string representing the length of this segment. It can have one or more of the following keys `XXD XXH XXM XXS` to represent days, hours, minutes, and seconds. For example, `7D 23H 59M 59S`
shift	A string representing the time shift from `event_timestamp`. It can have one or more of the following keys `XXD XXH XXM XXS` to represent days, hours, minutes, and seconds. For example, `7D 23H 59M 59S`. Use this value to change the start of a segment with respect to its `event_timestamp`. For example, set this variable to `1H` to create a segment that starts 1 hour from an event of interest (`shift_direction` determines if it's before or after).
shift_direction	An integer representing whether the `shift` is before (`-1`) or after (`1`) an `event_timestamp`
device_id	The device id (smartphone or Fitbit) to whom this segment belongs to. You have to create a line in this event segment file for each event of a participant that you want to analyze. If you have participants with multiple device ids, you can choose any of them

!!! example
    ```csv
    label,event_timestamp,length,shift,shift_direction,device_id
    stress1,1587661220000,1H,5M,1,a748ee1a-1d0b-4ae9-9074-279a2b6ba524
    stress2,1587747620000,4H,4H,-1,a748ee1a-1d0b-4ae9-9074-279a2b6ba524
    stress3,1587906020000,3H,5M,1,a748ee1a-1d0b-4ae9-9074-279a2b6ba524
    stress4,1584291600000,7H,4H,-1,a748ee1a-1d0b-4ae9-9074-279a2b6ba524
    stress5,1588172420000,9H,5M,-1,a748ee1a-1d0b-4ae9-9074-279a2b6ba524
    mood,1587661220000,1H,0,0,a748ee1a-1d0b-4ae9-9074-279a2b6ba524
    mood,1587747620000,1D,0,0,a748ee1a-1d0b-4ae9-9074-279a2b6ba524
    mood,1587906020000,7D,0,0,a748ee1a-1d0b-4ae9-9074-279a2b6ba524
    ```

 This example will create eight segments for a single participant (`a748ee1a...`), five independent `stressX` segments with various lengths (1,4,3,7, and 9 hours). Segments `stress1`, `stress3`, and `stress5` are shifted forwards by 5 minutes, and `stress2` and `stress4` are shifted backward by 4 hours (that is, if the `stress4` event happened on March 15th at 1pm EST (`1584291600000`), the time segment will start on that day at 9am and end at 4pm).

 The three `mood` segments are 1 hour, 1 day, and 7 days long and have no shift. In addition, these `mood` segments are grouped together, meaning that although RAPIDS will compute features on each one of them, some information for such computation will be extracted from all three segments, for example, the phone contact that called a participant the most, or the location clusters visited by a participant.

??? info "Date time labels of event segments"
 In the final feature file, you will find a row per event segment. The `local_segment` column of each row has a `label`, a start date-time string, and an end date-time string.

    ```bash
    weeklysurvey2060#2020-09-12 01:00:00,2020-09-18 23:59:59
    ```

 All sensor data is always segmented based on timestamps, and the date-time strings are attached for informative purposes. For example, you can plot your features based on these strings.

 When you configure RAPIDS to work with a single time zone, such time zone code will be used to convert start/end timestamps (the ones you typed in the event segments file) into start/end date-time strings. However, when you configure RAPIDS to work with multiple time zones, RAPIDS will use the most common time zone across all devices of every participant to do the conversion. The most common time zone is the one in which a participant spent the most time.

 In practical terms, this means that the date-time strings of event segments that happened in uncommon time zones will have shifted start/end date-time labels. However, the data within each segment was correctly filtered based on timestamps.

Segment Examples

=== “5-minutes”
Use the following Frequency segment file to create 288 (12 * 60 * 24) 5-minute segments starting from midnight of every day in your study
csv label,length fiveminutes,5
=== “Daily”
Use the following Periodic segment file to create daily segments starting from midnight of every day in your study
csv label,start_time,length,repeats_on,repeats_value daily,00:00:00,23H 59M 59S,every_day,0
=== “Morning”
Use the following Periodic segment file to create morning segments starting at 06:00:00 and ending at 11:59:59 of every day in your study
csv label,start_time,length,repeats_on,repeats_value morning,06:00:00,5H 59M 59S,every_day,0
=== “Overnight”
Use the following Periodic segment file to create overnight segments starting at 20:00:00 and ending at 07:59:59 (next day) of every day in your study
csv label,start_time,length,repeats_on,repeats_value morning,20:00:00,11H 59M 59S,every_day,0
=== “Weekly”
Use the following Periodic segment file to create non-overlapping weekly segments starting at midnight of every Monday in your study
csv label,start_time,length,repeats_on,repeats_value weekly,00:00:00,6D 23H 59M 59S,wday,1
Use the following Periodic segment file to create overlapping weekly segments starting at midnight of every day in your study
csv label,start_time,length,repeats_on,repeats_value weekly,00:00:00,6D 23H 59M 59S,every_day,0
=== “Week-ends”
Use the following Periodic segment file to create week-end segments starting at midnight of every Saturday in your study
csv label,start_time,length,repeats_on,repeats_value weekend,00:00:00,1D 23H 59M 59S,wday,6
=== “Around surveys”
Use the following Event segment file to create two 2-hour segments that start 1 hour before surveys answered by 3 participants
csv label,event_timestamp,length,shift,shift_direction,device_id survey1,1587661220000,2H,1H,-1,a748ee1a-1d0b-4ae9-9074-279a2b6ba524 survey2,1587747620000,2H,1H,-1,a748ee1a-1d0b-4ae9-9074-279a2b6ba524 survey1,1587906020000,2H,1H,-1,rqtertsd-43ff-34fr-3eeg-efe4fergregr survey2,1584291600000,2H,1H,-1,rqtertsd-43ff-34fr-3eeg-efe4fergregr survey1,1588172420000,2H,1H,-1,klj34oi2-8frk-2343-21kk-324ljklewlr3 survey2,1584291600000,2H,1H,-1,klj34oi2-8frk-2343-21kk-324ljklewlr3

Timezone of your study

Single timezone

If your study only happened in a single time zone or you want to ignore short trips of your participants to different time zones, select the appropriate code from this list [https://en.wikipedia.org/wiki/List_of_tz_database_time_zones] and change the following config key. Double-check your timezone code pick; for example, US Eastern Time is America/New_York, not EST.

TIMEZONE:
 TYPE: SINGLE
 TZCODE: America/New_York

Multiple timezones

If your participants lived in different time zones or they traveled across time zones, and you know when participants’ devices were in a specific time zone, RAPIDS can use this data to process your data streams with the correct date-time. You need to provide RAPIDS with the time zone data in a CSV file ([TZCODES_FILE]) in the format described below.

TIMEZONE:
 TYPE: MULTIPLE
 SINGLE:
 TZCODE: America/New_York
 MULTIPLE:
 TZCODES_FILE: path_to/time_zones_csv.file
 IF_MISSING_TZCODE: STOP
 DEFAULT_TZCODE: America/New_York
 FITBIT:
 ALLOW_MULTIPLE_TZ_PER_DEVICE: False
 INFER_FROM_SMARTPHONE_TZ: False

Parameters for [TIMEZONE]

Parameter	Description
–	–
[TYPE]	Either SINGLE or MULTIPLE as explained above
[SINGLE][TZCODE]	The time zone code from this list [https://en.wikipedia.org/wiki/List_of_tz_database_time_zones] to be used across all devices
[MULTIPLE][TZCODES_FILE]	A CSV file containing the time zones in which participants’ devices sensed data (see the required format below). Multiple devices can be linked to the same person. Read more in Participants Files
[MULTIPLE][IF_MISSING_TZCODE]	When a device is missing from [TZCODES_FILE] Set this flag to STOP to stop RAPIDS execution and show an error, or to USE_DEFAULT to assign the time zone specified in [DEFAULT_TZCODE] to any such devices
[MULTIPLE][FITBIT][ALLOW_MULTIPLE_TZ_PER_DEVICE]	You only need to care about this flag if one or more Fitbit devices sensed data in one or more time zones, and you want RAPIDS to take into account this in its feature computation. Read more in “How does RAPIDS handle Fitbit devices?” below.
[MULTIPLE][FITBIT][INFER_FROM_SMARTPHONE_TZ]	You only need to care about this flag if one or more Fitbit devices sensed data in one or more time zones, and you want RAPIDS to take into account this in its feature computation. Read more in “How does RAPIDS handle Fitbit devices?” below.

??? info “Format of TZCODES_FILE”
TZCODES_FILE has three columns and a row for each time zone a device visited (a device can be a smartphone or wearable (Fitbit/Empatica)):

Column	Description
`device_id`	A string that uniquely identifies a smartphone or wearable
`tzcode`	A string with the appropriate code from this [list](https://en.wikipedia.org/wiki/List_of_tz_database_time_zones) that represents the time zone where the `device` sensed data
`timestamp`	A UNIX timestamp indicating when was the first time this `device_id` sensed data in `tzcode`

```csv
device_id,                            tzcode,              timestamp
13dbc8a3-dae3-4834-823a-4bc96a7d459d, America/New_York,     1587500000000
13dbc8a3-dae3-4834-823a-4bc96a7d459d, America/Mexico_City,  1587600000000
13dbc8a3-dae3-4834-823a-4bc96a7d459d, America/Los_Angeles,  1587700000000
65sa66a5-2d2d-4524-946v-44ascbv4sad7, Europe/Amsterdam,     1587100000000
65sa66a5-2d2d-4524-946v-44ascbv4sad7, Europe/Berlin,        1587200000000
65sa66a5-2d2d-4524-946v-44ascbv4sad7, Europe/Amsterdam,     1587300000000
```

Using this file, RAPDIS will create time zone intervals per device, for example for `13dbc8a3-dae3-4834-823a-4bc96a7d459d`:

- Interval 1 `[1587500000000, 1587599999999]` for `America/New_York`
- Interval 2 `[1587600000000, 1587699999999]` for `America/Mexico_City`
- Interval 3 `[1587700000000, now]` for `America/Los_Angeles`

Any sensor data row from a device will be assigned a timezone if it falls within that interval, for example:

- A screen row sensed at `1587533333333` will be assigned to `America/New_York` because it falls within Interval 1
- A screen row sensed at `1587400000000` will be discarded because it was logged outside any interval.
- **Important** any sensor data that cannot be assigned to a row will be discarded and you will see a warning. To avoid this, add enough time zone intervals. Remember you can set **timestamp** to 0 to avoid having to set an initial timestamp for every device id; see below `What happens if participant X lives in Los Angeles but participant Y lives in Amsterdam and they both stayed there during my study?`

??? note “Can I get the TZCODES_FILE from the time zone table collected automatically by the AWARE app?”
Sure. You can put your timezone table (timezone.csv) collected by the AWARE app under data/external folder and run:
bash python tools/create_multi_timezones_file.py
The TZCODES_FILE will be saved as data/external/multiple_timezones.csv.

??? note “What happens if participant X lives in Los Angeles but participant Y lives in Amsterdam and they both stayed there during my study?”
Add a row per participant and set timestamp to 0:
csv device_id, tzcode, timestamp 13dbc8a3-dae3-4834-823a-4bc96a7d459d, America/Los_Angeles, 0 65sa66a5-2d2d-4524-946v-44ascbv4sad7, Europe/Amsterdam, 0

??? note “What happens if I forget to add a timezone for one or more devices?”
It depends on [IF_MISSING_TZCODE].

If `[IF_MISSING_TZCODE]` is set to `STOP`, RAPIDS will stop its execution and show you an error message.

If `[IF_MISSING_TZCODE]` is set to `USE_DEFAULT`, it will assign the time zone specified in `[DEFAULT_TZCODE]` to any devices with missing time zone information in `[TZCODES_FILE]`. This is helpful if only a few of your participants had multiple timezones, and you don't want to specify the same time zone for the rest.

??? note “How does RAPIDS handle Fitbit devices?”
Fitbit devices are not time zone aware, and they always log data with a local date-time string.

- When none of the Fitbit devices in your study changed time zones (e.g., `p01` was always in New York and `p02` was always in Amsterdam), you can set a single time zone per Fitbit device id along with a timestamp of 0 (you can still assign multiple time zones to smartphone device ids)
```csv
device_id, tzcode,              timestamp
fitbit123, America/New_York,     0
fitbit999, Europe/Amsterdam,     0
```

- On the other hand, when at least one of your Fitbit devices changed time zones **AND** you want RAPIDS to take into account these changes, you need to set `[ALLOW_MULTIPLE_TZ_PER_DEVICE]` to `True`. **You have to manually allow this option because you need to be aware it can produce inaccurate features around the times when time zones changed**. This is because we cannot know precisely when the Fitbit device detected and processed the time zone change.

 If you want to `ALLOW_MULTIPLE_TZ_PER_DEVICE`, you will need to add any time zone changes per device in the `TZCODES_FILE` as explained above. You could obtain this data by hand, but if your participants also used a smartphone during your study, you can use their time zone logs. Recall that in RAPIDS, every participant is represented with a participant file `pXX.yaml`, this file links together multiple devices, and we will use it to know what smartphone time zone data should be applied to Fitbit devices. Thus set `INFER_FROM_SMARTPHONE_TZ` to `TRUE`, if you have included smartphone time zone data in your `TZCODE_FILE` and want to make a participant's Fitbit data time zone aware with their respective smartphone data.

Data Stream Configuration

Modify the following keys in your config.yaml depending on the data stream you want to process.

=== “Phone”

Set `[PHONE_DATA_STREAMS][TYPE]` to the smartphone data stream you want to process (e.g. `aware_mysql`) and configure its parameters (e.g. `[DATABASE_GROUP]`). Ignore the parameters of streams you are not using (e.g. `[FOLDER]` of `aware_csv`).

```yaml
PHONE_DATA_STREAMS:
  USE: aware_mysql

  # AVAILABLE:
  aware_mysql:
    DATABASE_GROUP: MY_GROUP

  aware_csv:
    FOLDER: data/external/aware_csv
```

=== "aware_mysql"

 | Key | Description |
 |---------------------|--|
 | `[DATABASE_GROUP]` | A database credentials group. Read the instructions below to set it up |

 --8<---- "docs/snippets/database.md"

=== "aware_csv"

 | Key | Description |
 |---------------------|--|
 | `[FOLDER]` | Folder where you have to place a CSV file **per** phone sensor. Each file has to contain all the data from every participant you want to process. |

=== “Fitbit”

Set `[FITBIT_DATA_STREAMS][TYPE]` to the Fitbit data stream you want to process (e.g. `fitbitjson_mysql`) and configure its parameters (e.g. `[DATABASE_GROUP]`). Ignore the parameters of the other streams you are not using (e.g. `[FOLDER]` of `aware_csv`).

!!! warning
 You will probably have to tell RAPIDS the name of the columns where you stored your Fitbit data. To do this, modify your chosen stream's `format.yaml` column mappings to match your raw data column names.


```yaml
FITBIT_DATA_STREAMS:
  USE: fitbitjson_mysql

  # AVAILABLE:
  fitbitjson_mysql:
    DATABASE_GROUP: MY_GROUP
    SLEEP_SUMMARY_LAST_NIGHT_END: 660

  fitbitjson_csv:
    FOLDER: data/external/fitbit_csv
    SLEEP_SUMMARY_LAST_NIGHT_END: 660

  fitbitparsed_mysql:
    DATABASE_GROUP: MY_GROUP
    SLEEP_SUMMARY_LAST_NIGHT_END: 660
    
  fitbitparsed_csv:
    FOLDER: data/external/fitbit_csv
    SLEEP_SUMMARY_LAST_NIGHT_END: 660

```

=== "fitbitjson_mysql"

 This data stream processes Fitbit data inside a JSON column obtained from the Fitbit API and stored in a MySQL database. Read more about its column mappings and mutations in [`fitbitjson_mysql`](../../datastreams/fitbitjson-mysql#format).

 | Key | Description |
 |---------------------|--|
 | `[DATABASE_GROUP]` | A database credentials group. Read the instructions below to set it up |
 | `[SLEEP_SUMMARY_LAST_NIGHT_END]` | Segments are assigned based on this parameter. Any sleep episodes that start between today's SLEEP_SUMMARY_LAST_NIGHT_END (LNE) and tomorrow's LNE are regarded as today's sleep episodes. While today's bedtime is based on today's sleep episodes, today's wake time is based on yesterday's sleep episodes. |

 --8<---- "docs/snippets/database.md"

=== "fitbitjson_csv"

 This data stream processes Fitbit data inside a JSON column obtained from the Fitbit API and stored in a CSV file. Read more about its column mappings and mutations in [`fitbitjson_csv`](../../datastreams/fitbitjson-csv#format).

 | Key | Description |
 |---------------------|--|
 | `[FOLDER]` | Folder where you have to place a CSV file **per** Fitbit sensor. Each file has to contain all the data from every participant you want to process. |
 | `[SLEEP_SUMMARY_LAST_NIGHT_END]` | Segments are assigned based on this parameter. Any sleep episodes that start between today's SLEEP_SUMMARY_LAST_NIGHT_END (LNE) and tomorrow's LNE are regarded as today's sleep episodes. While today's bedtime is based on today's sleep episodes, today's wake time is based on yesterday's sleep episodes. |

=== "fitbitparsed_mysql"

 This data stream process Fitbit data stored in multiple columns after being parsed from the JSON column returned by Fitbit API and stored in a MySQL database. Read more about its column mappings and mutations in [`fitbitparsed_mysql`](../../datastreams/fitbitparsed-mysql#format).

 | Key | Description |
 |---------------------|--|
 | `[DATABASE_GROUP]` | A database credentials group. Read the instructions below to set it up |
 | `[SLEEP_SUMMARY_LAST_NIGHT_END]` | Segments are assigned based on this parameter. Any sleep episodes that start between today's SLEEP_SUMMARY_LAST_NIGHT_END (LNE) and tomorrow's LNE are regarded as today's sleep episodes. While today's bedtime is based on today's sleep episodes, today's wake time is based on yesterday's sleep episodes. |

 --8<---- "docs/snippets/database.md"

=== "fitbitparsed_csv"

 This data stream process Fitbit data stored in multiple columns (plain text) after being parsed from the JSON column returned by Fitbit API and stored in a CSV file. Read more about its column mappings and mutations in [`fitbitparsed_csv`](../../datastreams/fitbitparsed-csv#format).

 | Key | Description |
 |---------------------|--|
 | `[FOLDER]` | Folder where you have to place a CSV file **per** Fitbit sensor. Each file has to contain all the data from every participant you want to process. |
 | `[SLEEP_SUMMARY_LAST_NIGHT_END]` | Segments are assigned based on this parameter. Any sleep episodes that start between today's SLEEP_SUMMARY_LAST_NIGHT_END (LNE) and tomorrow's LNE are regarded as today's sleep episodes. While today's bedtime is based on today's sleep episodes, today's wake time is based on yesterday's sleep episodes. |

=== “Empatica”

Set `[USE]` to the Empatica data stream you want to use; see the table in [introduction to data streams](../../datastreams/data-streams-introduction). Configure any parameters as indicated below.

```yaml
EMPATICA_DATA_STREAMS:
  USE: empatica_zip
  
  # AVAILABLE:
  empatica_zip: 
    FOLDER: data/external/empatica

```

=== "empatica_zip"

 | Key | Description |
 |---------------------|--|
 | `[FOLDER]` | The relative path to a folder containing one subfolder per participant. The name of a participant folder should match their device_id assigned in their participant file. Each participant folder can have one or more zip files with any name; in other words, the sensor data in those zip files belong to a single participant. The zip files are [automatically](https://support.empatica.com/hc/en-us/articles/201608896-Data-export-and-formatting-from-E4-connect-) generated by Empatica and have a CSV file per sensor (`ACC`, `HR`, `TEMP`, `EDA`, `BVP`, `TAGS`). All CSV files of the same type contained in one or more zip files are uncompressed, parsed, sorted by timestamp, and joined together.|

 ??? example "Example of an EMPATICA FOLDER"
 In the file tree below, we want to process three participants' data: `p01`, `p02`, and `p03`. `p01` has two zip files, `p02` has only one zip file, and `p03` has three zip files. Each zip has a CSV file per sensor that is joined together and processed by RAPIDS.

        ```bash
        data/ # this folder exists in the root RAPIDS folder
          external/
            empatica/
              p01/
                file1.zip
                file2.zip
              p02/
                aaaa.zip
              p03/
                t1.zip
                t2.zip
                t3.zip
        ```


Sensor and Features to Process

Finally, you need to modify the config.yaml section of the sensors you want to extract behavioral features from. All sensors follow the same naming nomenclature (DEVICE_SENSOR) and parameter structure which we explain in the Behavioral Features Introduction.

!!! done
Head over to Execution to learn how to execute RAPIDS.

Execution

After you have installed and configured RAPIDS, use the following command to execute it.

./rapids -j1

!!! done “Ready to extract behavioral features”
If you are ready to extract features head over to the Behavioral Features Introduction

!!! hint “We wrap Snakemake”
The script #!bash ./rapids is a wrapper around Snakemake so you can pass any parameters that Snakemake accepts (e.g. -j1).

!!! hint “Updating RAPIDS output after modifying config.yaml”
Any changes to the config.yaml file will be applied automatically and only the relevant files will be updated. This means that after modifying the features list for PHONE_MESSAGE for example, RAPIDS will execute the script that computes MESSAGES features and update its output file.

!!! hint “Multi-core”
You can run RAPIDS over multiple cores by modifying the -j argument (e.g. use -j8 to use 8 cores). However, take into account that this means multiple sensor datasets for different participants will be loaded in memory at the same time. If RAPIDS crashes because it ran out of memory, reduce the number of cores and try again.

As reference, we have run RAPIDS over 12 cores and 32 Gb of RAM without problems for a study with 200 participants with 14 days of low-frequency smartphone data (no accelerometer, gyroscope, or magnetometer).

!!! hint “Deleting RAPIDS output”
If you want to delete all the output files RAPIDS produces, you can execute the following command:

```bash
./rapids -j1 --delete-all-output
```


!!! hint “Forcing a complete rerun or updating your raw data in RAPIDS”
If you want to update your raw data or rerun the whole pipeline from scratch, run the following commands:

```bash
./rapids -j1 --delete-all-output
./rapids -j1
```


Installation

You can install RAPIDS using Docker (the fastest), or native instructions for MacOS and Linux (Ubuntu). Windows is supported through Docker or WSL.

=== “Docker”

1. Install [Docker](https://docs.docker.com/desktop/)

2. Pull our RAPIDS container
    ``` bash
    docker pull moshiresearch/rapids:latest
    ```

3. Run RAPIDS\' container (after this step is done you should see a
 prompt in the main RAPIDS folder with its python environment active)

    ``` bash
    docker run -it moshiresearch/rapids:latest
    ```

4. Pull the latest version of RAPIDS

    ``` bash
    git pull
    ```

5. Make RAPIDS script executable
    ```bash
    chmod +x rapids
    ```

6. Check that RAPIDS is working
    ``` bash
    ./rapids -j1
    ```
7. *Optional*. You can edit RAPIDS files with `vim` but we recommend using `Visual Studio Code` and its `Remote Containers` extension

 ??? info "How to configure the Remote Containers extension"

 - Make sure RAPIDS Docker container is running

 - Install VS Code and its [Remote - Containers extension](https://marketplace.visualstudio.com/items?itemName=ms-vscode-remote.remote-containers)

 - Click the `Remote Explorer` icon on the left-hand sidebar (the icon is a computer monitor)

 - On the top right dropdown menu, choose `Containers`

 - Right-click on the `moshiresearch/rapids` container in the `CONTAINERS` tree and select `Attach to Container`. A new VS Code window should open

 - In the new window, open the `/rapids/` folder via the `File/Open...` menu

 - Run RAPIDS inside a terminal in VS Code. Open one with the `Terminal/New Terminal` menu

!!! warning
 If you installed RAPIDS using Docker for Windows on Windows 10, the container will have [limits](https://stackoverflow.com/questions/43460770/docker-windows-container-memory-limit) on the amount of RAM it can use. If you find that RAPIDS crashes due to running out of memory, [increase](https://stackoverflow.com/a/56583203/6030343) this limit.

=== “MacOS”
We tested these instructions in Catalina and Big Sur

??? info "M1 Macs"
 RAPIDS can run on M1 Macs, the only changes as of Mar 17, 2022 are:

 - Brew and everything installed with it needs to be setup under Rosetta (x86 arch) due to incompatibility issues with some R libraries and python packages. To do this, run your terminal [via Rosetta](https://www.youtube.com/watch?v=nv2ylxro7rM&t=138s), then proceed with our installation commands.
 - There is a bug related to timezone codes. We set the correct `TZ_DIR` in `renv/activate.R` (line #19) `Sys.setenv("TZDIR" = file.path(R.home(), "share", "zoneinfo"))` (RAPIDS does this automatically).

1. Install [brew](https://brew.sh/)

2. Install MySQL

    ``` bash
    brew install mysql
    brew services start mysql
    ```

3. Install R 4.0, pandoc and rmarkdown. If you have other instances of R, we recommend uninstalling them

    ``` bash
    brew install r
    brew install pandoc
    Rscript --vanilla -e 'install.packages("rmarkdown", repos="http://cran.us.r-project.org")'
    ```

4. Install miniconda (restart your terminal afterwards)

    ``` bash
    brew install --cask miniconda
    conda init zsh # (or conda init bash)
    ```

5. Clone our repo

    ``` bash
    git clone https://github.com/carissalow/rapids
    ```

6. Create a python virtual environment

    ``` bash
    cd rapids
    conda env create -f environment.yml -n rapids
    conda activate rapids
    ```

7. Install R packages and virtual environment:

    ``` bash
    snakemake -j1 renv_install
    snakemake -j1 renv_restore
       
    ```

 !!! note
 This step could take several minutes to complete, especially if you have less than 3Gb of RAM or packages need to be compiled from source. Please be patient and let it run until completion.

5. Make RAPIDS script executable
    ```bash
    chmod +x rapids
    ```

8. Check that RAPIDS is working
    ``` bash
    ./rapids -j1
    ```


=== “Ubuntu”

We tested RAPIDS on Ubuntu 18.04 & 20.04. Note that the necessary Python and R packages are available in other Linux distributions, so if you decide to give it a try, let us know and we can update these docs.

1. Install dependencies

    ``` bash
    sudo apt install libcurl4-openssl-dev
    sudo apt install libssl-dev
    sudo apt install libxml2-dev
    sudo apt install libglpk40
    ```

2. Install MySQL

    ``` bash
    sudo apt install libmysqlclient-dev
    sudo apt install mysql-server
    ```

3. Add key for R's repository.

    ``` bash
    sudo apt-key adv --keyserver keyserver.ubuntu.com --recv-keys E298A3A825C0D65DFD57CBB651716619E084DAB9
    ```

4. Add R's repository

 === "Ubuntu 18.04 Bionic"

        ``` bash
        sudo add-apt-repository 'deb https://cloud.r-project.org/bin/linux/ubuntu bionic-cran40/'
        ```

 === "Ubuntu 20.04 Focal"

        ``` bash
        sudo add-apt-repository 'deb https://cloud.r-project.org/bin/linux/ubuntu focal-cran40/'
        ```

5. Install R 4.0. If you have other instances of R, we recommend uninstalling them

    ``` bash
    sudo apt update
    sudo apt install r-base
    ```

6. Install Pandoc and rmarkdown

    ``` bash
    sudo apt install pandoc
    Rscript --vanilla -e 'install.packages("rmarkdown", repos="http://cran.us.r-project.org")'
    ```

7. Install git

    ``` bash
    sudo apt install git
    ```

8. Install [miniconda](https://docs.conda.io/projects/conda/en/latest/user-guide/install/linux.html)

9. Restart your current shell

10. Clone our repo:

    ``` bash
    git clone https://github.com/carissalow/rapids
    ```

11. Create a python virtual environment:

    ``` bash
    cd rapids
    conda env create -f environment.yml -n MY_ENV_NAME
    conda activate MY_ENV_NAME
    ```

7. Install the R virtual environment management package (renv)

    ``` bash
    snakemake -j1 renv_install
    ```

8. Restore the R virtual environment

 === "Ubuntu 18.04 Bionic (fast)"

 Run the following command to restore the R virtual environment using [RSPM](https://packagemanager.rstudio.com/client/#/repos/1/overview) binaries
        ```bash
        R -e 'renv::restore(repos = c(CRAN = "https://packagemanager.rstudio.com/all/__linux__/bionic/latest"))'
        ```

 === "Ubuntu 20.04 Focal (fast)"

 Run the following command to restore the R virtual environment using [RSPM](https://packagemanager.rstudio.com/client/#/repos/1/overview) binaries
        ```bash
        R -e 'renv::restore(repos = c(CRAN = "https://packagemanager.rstudio.com/all/__linux__/focal/latest"))'
        ```

 === "Ubuntu (slow)"

 If the fast installation command failed for some reason, you can restore the R virtual environment from source:
        ```bash
        R -e 'renv::restore()'
        ```

 !!! note
 This step could take several minutes to complete, especially if you have less than 3Gb of RAM or packages need to be compiled from source. Please be patient and let it run until completion.

5. Make RAPIDS script executable
    ```bash
    chmod +x rapids
    ```

8. Check that RAPIDS is working
    ``` bash
    ./rapids -j1
    ```


=== “Windows”

There are several options varying in complexity:

- You can use our Docker instructions (tested)
- You can use our Ubuntu 20.04 instructions on [WSL2](https://docs.microsoft.com/en-us/windows/wsl/install-win10) (not tested but it will likely work)
- Native installation (experimental). If you would like to contribute to RAPIDS you could try to install MySQL, miniconda, Python, and R 4.0+ in Windows and restore the Python and R virtual environments using steps 6 and 7 of the instructions for Mac. You can [get in touch](../../team) if you would like to discuss this with the team.

Overview

Let’s review some key concepts we use throughout these docs:

Definition	Description
–	–
Device	A mobile or wearable device, like smartphones, Fitbit wrist bands, Oura Rings, etc.
Sensor	A physical or digital module builtin in a device that produces a data stream. For example, a smartphone’s accelerometer or screen.
Data Stream	Set of sensor data collected using a specific device with a particular ** format** and stored in a specific container. For example, smartphone (device) data collected with the AWARE Framework [https://awareframework.com/] (format) and stored in a MySQL database (container).
Data Stream Format	Sensor data produced by a data stream have columns with specific names and types. RAPIDS can process a data stream using a format.yaml file that describes the raw data columns and any necessary transformations.
Data Stream Container	Sensor data produced by a data stream can be stored in a database, electronic files, or arbitrary electronic containers. RAPIDS can pull (download) the data from a stream using a container script implemented in R or Python.
Participant	A person that took part in a monitoring study
Behavioral feature	A metric computed from raw sensor data quantifying the behavior of a participant. For example, time spent at home calculated from location data. These are also known as digital biomarkers
Time segment	Time segments (or epochs) are the time windows on which RAPIDS extracts behavioral features. For example, you might want to compute participants’ time at home every morning or only during weekends. You define time segments in a CSV file that RAPIDS processes.
Time zone	A string like America/New_York that represents a time zone where a device logged data. You can process data collected in single or multiple time zones for every participant.
Feature Provider	A script that creates behavioral features for a specific sensor. Providers are created by the core RAPIDS team or by the community, which are named after its first author like [PHONE_LOCATIONS][DORYAB].
config.yaml	A YAML file where you can modify parameters to process data streams and behavioral features. This is the heart of RAPIDS and the file that you will change the most.
credentials.yaml	A YAML file where you can define credential groups (user, password, host, etc.) if your data stream needs to connect to a database or Web API
Participant file(s)	A YAML file that links one or more smartphone or wearable devices used by a single participant. RAPIDS needs one file per participant.

!!! success “What can I do with RAPIDS?”
- Extract behavioral features from smartphone, Fitbit, and Empatica’s supported data streams
- Add your own behavioral features (we can include them in RAPIDS if you want to share them with the community)
- Add support for new data streams if yours cannot be processed by RAPIDS yet
- Create visualizations for data quality control and feature inspection
- Extending RAPIDS to organize your analysis and publish a code repository along with your code

!!! hint
- We recommend you follow the Minimal Example tutorial to get familiar with RAPIDS

- In order to follow any of the previous tutorials, you will have to [Install](../installation/), [Configure](../configuration/), and learn how to [Execute](../execution/) RAPIDS.

- [Open a new discussion](https://github.com/carissalow/rapids/discussions) in Github if you have any questions and [open an issue](https://github.com/carissalow/rapids/issues) to report any bugs.

Frequently Asked Questions

General

??? question “What exactly is RAPIDS?”
RAPIDS is a group of configuration files and R and Python scripts executed by Snakemake [https://snakemake.github.io/]. You can get a copy of RAPIDS by cloning our Github repository.

RAPIDS is not a web application or server; all the processing is done in your laptop, server, or computer cluster.

??? question “How does RAPIDS work?”
You will most of the time only have to modify configuration files in YAML format (config.yaml, credentials.yaml, and participant files pxx.yaml), and in CSV format (time zones and time segments).

RAPIDS pulls data from different data containers and processes it in steps. The input/output of each stage is saved as a CSV file for inspection; you can check the files created for each sensor on its documentation page.

All data is stored in `data/`, and all processing Python and R scripts are stored in `src/`.

??? example "User and File interactions in RAPIDS"
 In the figure below, we represent the interactions between users and files. After a user modifies the configuration files mentioned above, the `Snakefile` file will search for and execute the Snakemake rules that contain the Python or R scripts necessary to generate or update the required output files (behavioral features, plots, etc.).

 <figure>

 <figcaption>Interaction diagram between the user, and important files in RAPIDS</figcaption>
 </figure>

??? example "Data flow in RAPIDS"
 In the figure below, we represent the flow of data in RAPIDS. In broad terms, smartphone and wearable devices log [data streams](../../datastreams/data-streams-introduction/) with a certain format to a data container (database, file, etc.).

 RAPIDS can connect to these containers if it has a `format.yaml` and a `container.[R|py]` script used to pull the correct data and mutate it to comply with RAPIDS' internal data representation. Once the data stream is in RAPIDS, it goes through some basic transformations (scripts), one that assigns a time segment and a time zone to each data row, and another one that creates "episodes" of data for some sensors that need it (like screen, battery, activity recognition, and sleep intraday data).

 After this, RAPIDS executes the requested `PROVIDER` script that computes behavioral features per time segment instance. After every feature is computed, they are joined per sensor, per participant, and study. Visualizations are built based on raw data or based on calculated features.

 <figure>

 <figcaption>Data stream flow in RAPIDS</figcaption>
 </figure>

??? question “Is my data private?”
Absolutely, you are processing your data with your own copy of RAPIDS in your laptop, server, or computer cluster, so neither we nor anyone else can access your datasets.

??? question “Do I need to have coding skills to use RAPIDS?”
If you want to extract the behavioral features or visualizations that RAPIDS offers out of the box, the answer is no. However, you need to be comfortable running commands in your terminal and familiar with editing YAML files and CSV files.

If you want to add support for new data streams or behavioral features, you need to be familiar with R or Python.

??? question “Is RAPIDS open-source or free?”
Yes, RAPIDS is both open-source and free.

??? question “How do I cite RAPIDS?”
Please refer to our Citation guide; depending on what parts of RAPIDS you used, we also ask you to cite the work of other authors that shared their work.

??? question “I have a lot of data, can RAPIDS handle it/ is RAPIDS fast enough?”
Yes, we use Snakemake under the hood, so you can automatically distribute RAPIDS execution over multiple cores or clusters [https://snakemake.readthedocs.io/en/stable/executing/cluster.html]. RAPIDS processes data per sensor and participant, so it can take advantage of this parallel processing.

??? question “What are the advantages of using RAPIDS over implementing my own analysis code?”
We believe RAPIDS can benefit your analysis in several ways:

- RAPIDS has more than 250 [behavioral features](../../features/add-new-features/) available, many of them tested and used by other researchers.
- RAPIDS can extract features in dynamic [time segments](../../setup/configuration/#time-segments) (for example, every x minutes, x hours, x days, x weeks, x months, etc.). This is handy because you don't have to deal with time zones, daylight saving changes, or date arithmetic.
- Your analysis is less prone to errors. Every participant sensor dataset is analyzed in the same way and isolated from each other.
- If you have lots of data, out-of-the-box parallel execution will speed up your analysis, and if your computer crashes, RAPIDS will start from where it left off.
- You can publish your analysis code along with your papers and be sure it will run exactly as it does on your computer.
- You can still add your own [behavioral features](../../features/add-new-features/) and [data streams](../../datastreams/add-new-data-streams/) if you need to, and the community will be able to reuse your work.

Data Streams

??? question “Can I process smartphone data collected with Beiwe, PurpleRobot, or app X?”
Yes, but you need to add a new data stream to RAPIDS (a new format.yaml and container script in R or Python). Follow this tutorial. Open a new discussion [https://github.com/carissalow/rapids/discussions] in Github if you have any questions.

If you do so, let us know so we can integrate your work into RAPIDS.

??? question “Can I process data from Oura Rings, Actigraphs, or wearable X?”
The only wearables we support at the moment are Empatica and Fitbit. However, get in touch if you need to process data from a different wearable. We have limited resources, so we add support for additional devices on an as-needed basis, but we would be happy to collaborate. Open a new discussion [https://github.com/carissalow/rapids/discussions] in Github if you have any questions.

??? question “Can I process smartphone or wearable data stored in PostgreSQL, Oracle, SQLite, CSV files, or data container X?”
Yes, but you need to add a new data stream to RAPIDS (a new format.yaml and container script in R or Python). Follow this tutorial. If you are processing data streams we already support like AWARE, Fitbit, or Empatica and are just connecting to a different container, you can reuse their format.yaml and only implement a new container script. Open a new discussion [https://github.com/carissalow/rapids/discussions] in Github if you have any questions.

If you do so, let us know so we can integrate your work into RAPIDS.

??? question “I have participants that live in different time zones and some that travel; can RAPIDS handle this?”
Yes, RAPIDS can handle single or multiple timezones per participant. You can use time zone data collected by smartphones or collected by hand.

??? question “Some of my participants used more than one device during my study; can RAPIDS handle this?”
Yes, you can link more than one smartphone or wearable device to a single participant. RAPIDS will merge them and sort them automatically.

??? question “Some of my participants switched from Android to iOS or vice-versa during my study; can RAPIDS handle this?”
Yes, data from multiple smartphones can be linked to a single participant. All iOS data is converted to Android data before merging it.

Extending RAPIDS

??? question “Can I add my own behavioral features/digital biomarkers?”
Yes, you can implement your own features in R or Python following this tutorial

??? question “Can I extract behavioral features based on two or more sensors?”
Yes, we do this for PHONE_DATA_YIELD (combines all phone sensors), PHONE_LOCATIONS (combines location and data yield data), PHONE_APPLICATIONS_BACKGROUND (combines screen and app usage data), and FITBIT_INTRADAY_STEPS (combines Fitbit and sleep and step data).

However, we haven't come up with a user-friendly way to configure this, and currently, we join sensors on a case-by-case basis. This is mainly because not enough users have needed this functionality so far. Get in touch, and we can set it up together; the more use cases we are aware of, the easier it will be to integrate this into RAPIDS.

??? question “I know how to program in Python or R but not both. Can I still use or extend RAPIDS?”
Yes, you don’t need to write any code to use RAPIDS out of the box. If you need to add support for new data streams or behavioral features you can use scripts in either language.

??? question “I have scripts that clean raw data from X sensor, can I use them with RAPIDS?”
Yes, you can add them as a [MUTATION][SCRIPT] in the format.yaml of the data stream you are using. You will add a main function that will receive a data frame with the raw data for that sensor that, in turn, will be used to compute behavioral features.

 If you collected sensor data with the vanilla (original) AWARE mobile clients, you shouldn’t need to modify this format (described below).

Remember that a format maps and transforms columns in your raw data stream to the mandatory columns RAPIDS needs.

The yaml file that describes the format of this data stream is at:

src/data/streams/aware_csv/format.yaml

For some sensors, we need to transform iOS data into Android format; you can refer to OS complex mapping for learn how this works.

!!! hint
The mappings in this stream (RAPIDS/Stream) are the same names because AWARE data was the first stream RAPIDS supported, meaning that it considers AWARE column names the default.

??? info “PHONE_ACCELEROMETER”

=== "ANDROID"

 RAPIDS_COLUMN_MAPPINGS

 | RAPIDS column | Stream column |
 |-----------------|-----------------|
 | TIMESTAMP | timestamp |
 | DEVICE_ID | device_id |
 | DOUBLE_VALUES_0 | double_values_0 |
 | DOUBLE_VALUES_1 | double_values_1 |
 | DOUBLE_VALUES_2 | double_values_2 |

 MUTATION

 - **COLUMN_MAPPINGS** (None)
 - **SCRIPTS** (None)

=== "IOS"

 Same as ANDROID

??? info “PHONE_ACTIVITY_RECOGNITION”

=== "ANDROID"

 RAPIDS_COLUMN_MAPPINGS

 | RAPIDS column | Stream column |
 |-----------------|-----------------|
 | TIMESTAMP | timestamp |
 | DEVICE_ID | device_id |
 | ACTIVITY_NAME | activity_name |
 | ACTIVITY_TYPE | activity_type |
 | CONFIDENCE | confidence |

 MUTATION

 - **COLUMN_MAPPINGS** (None)
 - **SCRIPTS** (None)

=== "IOS"

 RAPIDS_COLUMN_MAPPINGS

 | RAPIDS column | Stream column |
 |-----------------|-----------------|
 | TIMESTAMP | timestamp |
 | DEVICE_ID | device_id |
 | ACTIVITY_NAME | FLAG_TO_MUTATE |
 | ACTIVITY_TYPE | FLAG_TO_MUTATE |
 | CONFIDENCE | FLAG_TO_MUTATE |

 MUTATION

 - **COLUMN_MAPPINGS**

 | Script column | Stream column |
 |-----------------|-----------------|
 | ACTIVITIES | activities |
 | CONFIDENCE | confidence |

 - **SCRIPTS**

    ```bash
    src/data/streams/mutations/phone/aware/activity_recogniton_ios_unification.R
    ```


 !!! note
 For RAPIDS columns of `ACTIVITY_NAME` and `ACTIVITY_TYPE`:

 - if stream's `activities` field is automotive, set `ACTIVITY_NAME` = in_vehicle and `ACTIVITY_TYPE` = 0
 - if stream's `activities` field is cycling, set `ACTIVITY_NAME` = on_bicycle and `ACTIVITY_TYPE` = 1
 - if stream's `activities` field is walking, set `ACTIVITY_NAME` = walking and `ACTIVITY_TYPE` = 7
 - if stream's `activities` field is running, set `ACTIVITY_NAME` = running and `ACTIVITY_TYPE` = 8
 - if stream's `activities` field is stationary, set `ACTIVITY_NAME` = still and `ACTIVITY_TYPE` = 3
 - if stream's `activities` field is unknown, set `ACTIVITY_NAME` = unknown and `ACTIVITY_TYPE` = 4

 For RAPIDS `CONFIDENCE` column:

 - if stream's `confidence` field is 0, set `CONFIDENCE` = 0
 - if stream's `confidence` field is 1, set `CONFIDENCE` = 50
 - if stream's `confidence` field is 2, set `CONFIDENCE` = 100

??? info “PHONE_APPLICATIONS_CRASHES”

=== "ANDROID"

 RAPIDS_COLUMN_MAPPINGS

 | RAPIDS column | Stream column |
 |--------------------|--------------------|
 | TIMESTAMP | timestamp |
 | DEVICE_ID | device_id |
 | PACKAGE_NAME | package_name |
 | APPLICATION_NAME | application_name |
 | APPLICATION_VERSION| application_version|
 | ERROR_SHORT | error_short |
 | ERROR_LONG | error_long |
 | ERROR_CONDITION | error_condition |
 | IS_SYSTEM_APP | is_system_app |

 MUTATION

 - **COLUMN_MAPPINGS** (None)
 - **SCRIPTS** (None)

=== "IOS"

 This sensor is not supported by iOS devices.

??? info “PHONE_APPLICATIONS_FOREGROUND”

=== "ANDROID"

 RAPIDS_COLUMN_MAPPINGS

 | RAPIDS column | Stream column |
 |--------------------|--------------------|
 | TIMESTAMP | timestamp |
 | DEVICE_ID | device_id |
 | PACKAGE_NAME | package_name |
 | APPLICATION_NAME | application_name |
 | IS_SYSTEM_APP | is_system_app |

 MUTATION

 - **COLUMN_MAPPINGS** (None)
 - **SCRIPTS** (None)

=== "IOS"

 This sensor is not supported by iOS devices.

??? info “PHONE_APPLICATIONS_NOTIFICATIONS”

=== "ANDROID"

 RAPIDS_COLUMN_MAPPINGS

 | RAPIDS column | Stream column |
 |--------------------|--------------------|
 | TIMESTAMP | timestamp |
 | DEVICE_ID | device_id |
 | PACKAGE_NAME | package_name |
 | APPLICATION_NAME | application_name |
 | TEXT | text |
 | SOUND | sound |
 | VIBRATE | vibrate |
 | DEFAULTS | defaults |
 | FLAGS | flags |

 MUTATION

 - **COLUMN_MAPPINGS** (None)
 - **SCRIPTS** (None)

=== "IOS"

 This sensor is not supported by iOS devices.

??? info “PHONE_BATTERY”

=== "ANDROID"

 RAPIDS_COLUMN_MAPPINGS

 | RAPIDS column | Stream column |
 |----------------------|---------------------|
 | TIMESTAMP | timestamp |
 | DEVICE_ID | device_id |
 | BATTERY_STATUS | battery_status |
 | BATTERY_LEVEL | battery_level |
 | BATTERY_SCALE | battery_scale |

 MUTATION

 - **COLUMN_MAPPINGS** (None)
 - **SCRIPTS** (None)

=== "IOS Client V1"

 RAPIDS_COLUMN_MAPPINGS

 | RAPIDS column | Stream column |
 |----------------------|---------------------|
 | TIMESTAMP | timestamp |
 | DEVICE_ID | device_id |
 | BATTERY_STATUS | FLAG_TO_MUTATE |
 | BATTERY_LEVEL | battery_level |
 | BATTERY_SCALE | battery_scale |

 MUTATION

 - **COLUMN_MAPPINGS**

 | Script column | Stream column |
 |----------------------|---------------------|
 | BATTERY_STATUS | battery_status |

 - **SCRIPTS**

    ```bash
    src/data/streams/mutations/phone/aware/battery_ios_unification.R
    ```

 !!! note
 For RAPIDS `BATTERY_STATUS` column:

 - if stream's `battery_status` field is 3, set `BATTERY_STATUS` = 5 (full status)
 - if stream's `battery_status` field is 1, set `BATTERY_STATUS` = 3 (discharge)

=== "IOS Client V2"

 Same as ANDROID

??? info “PHONE_BLUETOOTH”

=== "ANDROID"

 RAPIDS_COLUMN_MAPPINGS

 | RAPIDS column | Stream column |
 |----------------------|---------------------|
 | TIMESTAMP | timestamp |
 | DEVICE_ID | device_id |
 | BT_ADDRESS | bt_address |
 | BT_NAME | bt_name |
 | BT_RSSI | bt_rssi |

 MUTATION

 - **COLUMN_MAPPINGS** (None)
 - **SCRIPTS** (None)

=== "IOS"

 Only old iOS versions supported this sensor (same mapping as Android).

??? info “PHONE_CALLS”

=== "ANDROID"

 RAPIDS_COLUMN_MAPPINGS

 | RAPIDS column | Stream column |
 |----------------------|---------------------|
 | TIMESTAMP | timestamp |
 | DEVICE_ID | device_id |
 | CALL_TYPE | call_type |
 | CALL_DURATION | call_duration |
 | TRACE | trace |

 MUTATION

 - **COLUMN_MAPPINGS** (None)
 - **SCRIPTS** (None)

=== "IOS"

 RAPIDS_COLUMN_MAPPINGS

 | RAPIDS column | Stream column |
 |----------------------|---------------------|
 | TIMESTAMP | timestamp |
 | DEVICE_ID | device_id |
 | CALL_TYPE | FLAG_TO_MUTATE |
 | CALL_DURATION | call_duration |
 | TRACE | trace |

 MUTATION

 - **COLUMN_MAPPINGS**

 | Script column | Stream column |
 |----------------------|---------------------|
 | CALL_TYPE | call_type |

 - **SCRIPTS**

    ```bash
    src/data/streams/mutations/phone/aware/calls_ios_unification.R
    ```

 !!! note

 We transform iOS call logs into Android's format. iOS stores call status: 1=incoming, 2=connected, 3=dialing, 4=disconnected, as opposed to Android's events: 1=incoming, 2=outgoing, 3=missed.

 We follow this algorithm to convert iOS call data (there are some inaccuracies in the way we handle sequences, see new rules below):

 - Search for the disconnected (4) status as it is common to all calls
 - Group all events that preceded every status 4
 - We convert every 1,2,4 (or 2,1,4) sequence to an incoming call
 - We convert every 3,2,4 (or 2,3,4) sequence to an outgoing call
 - We convert every 1,4 or 3,4 sequence to a missed call (either incoming or outgoing)
 - We set the duration of the call to be the sum of every status (dialing/ringing to hangup) as opposed to the duration of the last status (pick up to hang up)

 Tested with an Android (OnePlus 7T) and an iPhone XR

 |Call type | Android (duration) | iOS (duration) | New Rule|
 |---------|----------|--------|------|
 |Outgoing missed ended by me | 2 (0) | 3,4 (0,X) | 3,4 is converted to 2 with duration 0|
 |Outgoing missed ended by them|2(0)|3,2,4 (0,X,X2)| 3,2,4 is converted to 2 with duration X2*|
 |Incoming missed ended by me|NA**|1,4 (0,X)|1,4 is converted to 3 with duration 0|
 |Incoming missed ended by them|3(0)|1,4 (0,X)|1,4 is converted to 3 with duration 0|
 |Outgoing answered|2(X excluding dialing time)|3,2,4 (0,X,X2)|3,2,4 is converted to 2 with duration X2|
 |Incoming answered|1(X excluding dialing time)|1,2,4 (0,X,X2)|1,2,4 is converted to 1 with duration X2|

 .* There is no way to differentiate an outgoing missed call ended by them from an outgoing answered call because the phone goes directly to voice mail and it counts as call time (essentially the voice mail answered).

 .** Android does not record incoming missed calls ended by the participant, just those ended by the person calling or ignored by the participant.

??? info “PHONE_CONVERSATION”

=== "ANDROID"

 RAPIDS_COLUMN_MAPPINGS

 | RAPIDS column | Stream column |
 |----------------------|---------------------|
 | TIMESTAMP | timestamp |
 | DEVICE_ID | device_id |
 | DOUBLE_ENERGY | double_energy |
 | INFERENCE | inference |
 | DOUBLE_CONVO_START | double_convo_start |
 | DOUBLE_CONVO_END | double_convo_end |

 MUTATION

 - **COLUMN_MAPPINGS** (None)
 - **SCRIPTS** (None)

=== "IOS"

 RAPIDS_COLUMN_MAPPINGS

 | RAPIDS column | Stream column |
 |----------------------|---------------------|
 | TIMESTAMP | timestamp |
 | DEVICE_ID | device_id |
 | DOUBLE_ENERGY | double_energy |
 | INFERENCE | inference |
 | DOUBLE_CONVO_START | FLAG_TO_MUTATE |
 | DOUBLE_CONVO_END | FLAG_TO_MUTATE |

 MUTATION

 - **COLUMN_MAPPINGS**

 | Script column | Stream column |
 |----------------------|---------------------|
 | DOUBLE_CONVO_START | double_convo_start |
 | DOUBLE_CONVO_END | double_convo_end |

 - **SCRIPTS**

    ```bash
    src/data/streams/mutations/phone/aware/conversation_ios_timestamp.R
    ```

 !!! note
 For RAPIDS columns of `DOUBLE_CONVO_START` and `DOUBLE_CONVO_END`:

 - if stream's `double_convo_start` field is smaller than 9999999999, it is in seconds instead of milliseconds. Set `DOUBLE_CONVO_START` = 1000 * `double_convo_start`.
 - if stream's `double_convo_end` field is smaller than 9999999999, it is in seconds instead of milliseconds. Set `DOUBLE_CONVO_END` = 1000 * `double_convo_end`.

??? info “PHONE_KEYBOARD”

=== "ANDROID"

 RAPIDS_COLUMN_MAPPINGS

 | RAPIDS column | Stream column |
 |----------------------|---------------------|
 | TIMESTAMP | timestamp |
 | DEVICE_ID | device_id |
 | PACKAGE_NAME | package_name |
 | BEFORE_TEXT | before_text |
 | CURRENT_TEXT | current_text |
 | IS_PASSWORD | is_password |

 MUTATION

 - **COLUMN_MAPPINGS** (None)
 - **SCRIPTS** (None)

=== "IOS"

 This sensor is not supported by iOS devices.

??? info “PHONE_LIGHT”

=== "ANDROID"

 RAPIDS_COLUMN_MAPPINGS

 | RAPIDS column | Stream column |
 |----------------------|---------------------|
 | TIMESTAMP | timestamp |
 | DEVICE_ID | device_id |
 | DOUBLE_LIGHT_LUX | double_light_lux |
 | ACCURACY | accuracy |

 MUTATION

 - **COLUMN_MAPPINGS** (None)
 - **SCRIPTS** (None)

=== "IOS"

 This sensor is not supported by iOS devices.

??? info “PHONE_LOCATIONS”

=== "ANDROID"

 RAPIDS_COLUMN_MAPPINGS

 | RAPIDS column | Stream column |
 |----------------------|---------------------|
 | TIMESTAMP | timestamp |
 | DEVICE_ID | device_id |
 | DOUBLE_LATITUDE | double_latitude |
 | DOUBLE_LONGITUDE | double_longitude |
 | DOUBLE_BEARING | double_bearing |
 | DOUBLE_SPEED | double_speed |
 | DOUBLE_ALTITUDE | double_altitude |
 | PROVIDER | provider |
 | ACCURACY | accuracy |

 MUTATION

 - **COLUMN_MAPPINGS** (None)
 - **SCRIPTS** (None)

=== "IOS"

 Same as ANDROID

??? info “PHONE_LOG”

=== "ANDROID"

 RAPIDS_COLUMN_MAPPINGS

 | RAPIDS column | Stream column |
 |----------------------|---------------------|
 | TIMESTAMP | timestamp |
 | DEVICE_ID | device_id |
 | LOG_MESSAGE | log_message |

 MUTATION

 - **COLUMN_MAPPINGS** (None)
 - **SCRIPTS** (None)

=== "IOS"

 Same as ANDROID

??? info “PHONE_MESSAGES”

=== "ANDROID"

 RAPIDS_COLUMN_MAPPINGS

 | RAPIDS column | Stream column |
 |----------------------|---------------------|
 | TIMESTAMP | timestamp |
 | DEVICE_ID | device_id |
 | MESSAGE_TYPE | message_type |
 | TRACE | trace |

 MUTATION

 - **COLUMN_MAPPINGS** (None)
 - **SCRIPTS** (None)

=== "IOS"

 This sensor is not supported by iOS devices.

??? info “PHONE_SCREEN”

=== "ANDROID"

 RAPIDS_COLUMN_MAPPINGS

 | RAPIDS column | Stream column |
 |----------------------|---------------------|
 | TIMESTAMP | timestamp |
 | DEVICE_ID | device_id |
 | SCREEN_STATUS | screen_status |

 MUTATION

 - **COLUMN_MAPPINGS** (None)
 - **SCRIPTS** (None)

=== "IOS"

 RAPIDS_COLUMN_MAPPINGS

 | RAPIDS column | Stream column |
 |----------------------|---------------------|
 | TIMESTAMP | timestamp |
 | DEVICE_ID | device_id |
 | SCREEN_STATUS | FLAG_TO_MUTATE |

 MUTATION

 - **COLUMN_MAPPINGS**

 | Script column | Stream column |
 |----------------------|---------------------|
 | SCREEN_STATUS | screen_status |

 - **SCRIPTS**

    ```bash
    src/data/streams/mutations/phone/aware/screen_ios_unification.R
    ```

 !!! note
 For `SCREEN_STATUS` RAPIDS column:

 - if stream's `screen_status` field is 2 (lock episode), set `SCREEN_STATUS` = 0 (off episode).

??? info “PHONE_WIFI_CONNECTED”

=== "ANDROID"

 RAPIDS_COLUMN_MAPPINGS

 | RAPIDS column | Stream column |
 |----------------------|---------------------|
 | TIMESTAMP | timestamp |
 | DEVICE_ID | device_id |
 | MAC_ADDRESS | mac_address |
 | SSID | ssid |
 | BSSID | bssid |

 MUTATION

 - **COLUMN_MAPPINGS** (None)
 - **SCRIPTS** (None)

=== "IOS"

 Same as ANDROID

??? info “PHONE_WIFI_VISIBLE”

=== "ANDROID"

 RAPIDS_COLUMN_MAPPINGS

 | RAPIDS column | Stream column |
 |----------------------|---------------------|
 | TIMESTAMP | timestamp |
 | DEVICE_ID | device_id |
 | SSID | ssid |
 | BSSID | bssid |
 | SECURITY | security |
 | FREQUENCY | frequency |
 | RSSI | rssi |

 MUTATION

 - **COLUMN_MAPPINGS** (None)
 - **SCRIPTS** (None)

=== "IOS"

 Only old iOS versions supported this sensor (same mapping as Android).

 ??? info “Setting up a DATABASE_GROUP and its connection credentials.”

1. If you haven't done so, create an empty file called `#!bash credentials.yaml` in your RAPIDS root directory:

2. Add the following lines to `credentials.yaml` and replace your database-specific credentials (user, password, host, and database):

    ``` yaml
    MY_GROUP:
      database: MY_DATABASE
      host: MY_HOST
      password: MY_PASSWORD
      port: 3306
      user: MY_USER
    ```

1. Notes

 1. The label `[MY_GROUP]` is arbitrary but it has to match the `[DATABASE_GROUP]` attribute of the data stream you choose to use.

 2. Indentation matters

 3. You can have more than one credentials group in `credentials.yaml`

??? hint "Upgrading from `./.env` from RAPIDS 0.x"
 In RAPIDS versions 0.x, database credentials were stored in a `./.env` file. If you are migrating from that type of file, you have two options:

 1. Migrate your credentials by hand:

 === "change .env format"

            ``` yaml
            [MY_GROUP]
            user=MY_USER
            password=MY_PASSWORD
            host=MY_HOST
            port=3306
            database=MY_DATABASE
            ```   

 === "to credentials.yaml format"

            ``` yaml
            MY_GROUP:
              user: MY_USER
              password: MY_PASSWORD
              host: MY_HOST
              port: 3306
              database: MY_DATABASE
            ```

 2. Use the migration script we provide (make sure your conda environment is active):

        ```python
        python tools/update_format_env.py
        ```

??? hint "Connecting to localhost (host machine) from inside our docker container."
 If you are using RAPIDS' docker container and Docker-for-mac or Docker-for-Windows 18.03+, you can connect to a MySQL database in your host machine using `host.docker.internal` instead of `127.0.0.1` or `localhost`. In a Linux host, you need to run our docker container using `docker run --network="host" -d moshiresearch/rapids:latest` and then `127.0.0.1` will point to your host machine.

	Sensor section

Each sensor (accelerometer, screen, etc.) of every supported device (smartphone, Fitbit, etc.) has a section in the config.yaml with parameters and feature PROVIDERS.

	Sensor Parameters.

Each sensor section has one or more parameters. These are parameters that affect different aspects of how the raw data is pulled, and processed.

The CONTAINER parameter exists for every sensor, but some sensors will have extra parameters like [PHONE_LOCATIONS].

We explain these parameters in a table at the top of each sensor documentation page.

	Sensor Providers

Each object in this list represents a feature PROVIDER. Each sensor can have zero, one, or more providers.

A PROVIDER is a script that creates behavioral features for a specific sensor. Providers are created by the core RAPIDS team or by the community, which are named after its first author like [PHONE_LOCATIONS][DORYAB].

In this example, there are two accelerometer feature providers RAPIDS and PANDA.

	PROVIDER Parameters

Each PROVIDER has parameters that affect the computation of the behavioral features it offers.

These parameters include at least a [COMPUTE] flag that you switch to True to extract a provider’s behavioral features.

We explain every provider’s parameter in a table under the Parameters description heading on each provider documentation page.

	PROVIDER Features

Each PROVIDER offers a set of behavioral features.

These features are grouped in an array for some providers, like those for RAPIDS provider. For others, they are grouped in a collection of arrays, like those for PANDAS provider.

In either case, you can delete the features you are not interested in, and they will not be included in the sensor’s output feature file.

We explain each behavioral feature in a table under the Features description heading on each provider documentation page.

	PROVIDER script

Each PROVIDER has a SRC_SCRIPT that points to the script implementing its behavioral features.

It has to be a relative path from RAPIDS’ root folder and the script’s parent folder should be named after the provider, e.g. panda.

 The format.yaml maps and transforms columns in your raw data stream to the mandatory columns RAPIDS needs for Fitbit sensors. This file is at:

src/data/streams/fitbitjson_csv/format.yaml

If you want RAPIDS to process Fitbit sensor data using this stream, you will need to map DEVICE_ID and JSON_FITBIT_COLUMN to your own raw data columns inside each sensor section in format.yaml.

??? info “FITBIT_HEARTRATE_SUMMARY”

RAPIDS_COLUMN_MAPPINGS

RAPIDS column	Stream column
LOCAL_DATE_TIME	FLAG_TO_MUTATE
DEVICE_ID	device_id
HEARTRATE_DAILY_RESTINGHR	FLAG_TO_MUTATE
HEARTRATE_DAILY_CALORIESOUTOFRANGE	FLAG_TO_MUTATE
HEARTRATE_DAILY_CALORIESFATBURN	FLAG_TO_MUTATE
HEARTRATE_DAILY_CALORIESCARDIO	FLAG_TO_MUTATE
HEARTRATE_DAILY_CALORIESPEAK	FLAG_TO_MUTATE

MUTATION

- **COLUMN_MAPPINGS**

Script column	Stream column
JSON_FITBIT_COLUMN	fitbit_data

- **SCRIPTS**

    ```bash
    - src/data/streams/mutations/fitbit/parse_heartrate_summary_json.py
    - src/data/streams/mutations/fitbit/add_zero_timestamp.py
    ```

 !!! note
 All columns except `DEVICE_ID` are parsed from `JSON_FITBIT_COLUMN`. `JSON_FITBIT_COLUMN` is a string column containing the JSON objects returned by Fitbit's API. See an example of the raw data RAPIDS expects for this data stream:

 ??? example "Example of the raw data RAPIDS expects for this data stream"

 |device_id |fitbit_data |
 |-- |--- |
 |a748ee1a-1d0b-4ae9-9074-279a2b6ba524 |{"activities-heart":[{"dateTime":"2020-10-07","value":{"customHeartRateZones":[],"heartRateZones":[{"caloriesOut":1200.6102,"max":88,"min":31,"minutes":1058,"name":"Out of Range"},{"caloriesOut":760.3020,"max":120,"min":86,"minutes":366,"name":"Fat Burn"},{"caloriesOut":15.2048,"max":146,"min":120,"minutes":2,"name":"Cardio"},{"caloriesOut":0,"max":221,"min":148,"minutes":0,"name":"Peak"}],"restingHeartRate":72}}],"activities-heart-intraday":{"dataset":[{"time":"00:00:00","value":68},{"time":"00:01:00","value":67},{"time":"00:02:00","value":67},...],"datasetInterval":1,"datasetType":"minute"}}
 |a748ee1a-1d0b-4ae9-9074-279a2b6ba524 |{"activities-heart":[{"dateTime":"2020-10-08","value":{"customHeartRateZones":[],"heartRateZones":[{"caloriesOut":1100.1120,"max":89,"min":30,"minutes":921,"name":"Out of Range"},{"caloriesOut":660.0012,"max":118,"min":82,"minutes":361,"name":"Fat Burn"},{"caloriesOut":23.7088,"max":142,"min":108,"minutes":3,"name":"Cardio"},{"caloriesOut":0,"max":221,"min":148,"minutes":0,"name":"Peak"}],"restingHeartRate":70}}],"activities-heart-intraday":{"dataset":[{"time":"00:00:00","value":77},{"time":"00:01:00","value":75},{"time":"00:02:00","value":73},...],"datasetInterval":1,"datasetType":"minute"}}
 |a748ee1a-1d0b-4ae9-9074-279a2b6ba524 |{"activities-heart":[{"dateTime":"2020-10-09","value":{"customHeartRateZones":[],"heartRateZones":[{"caloriesOut":750.3615,"max":77,"min":30,"minutes":851,"name":"Out of Range"},{"caloriesOut":734.1516,"max":107,"min":77,"minutes":550,"name":"Fat Burn"},{"caloriesOut":131.8579,"max":130,"min":107,"minutes":29,"name":"Cardio"},{"caloriesOut":0,"max":220,"min":130,"minutes":0,"name":"Peak"}],"restingHeartRate":69}}],"activities-heart-intraday":{"dataset":[{"time":"00:00:00","value":90},{"time":"00:01:00","value":89},{"time":"00:02:00","value":88},...],"datasetInterval":1,"datasetType":"minute"}}

??? info “FITBIT_HEARTRATE_INTRADAY”

RAPIDS_COLUMN_MAPPINGS

RAPIDS column	Stream column
LOCAL_DATE_TIME	FLAG_TO_MUTATE
DEVICE_ID	device_id
HEARTRATE	FLAG_TO_MUTATE
HEARTRATE_ZONE	FLAG_TO_MUTATE

MUTATION

- **COLUMN_MAPPINGS**

Script column	Stream column
JSON_FITBIT_COLUMN	fitbit_data

- **SCRIPTS**

    ```bash
    - src/data/streams/mutations/fitbit/parse_heartrate_intraday_json.py
    - src/data/streams/mutations/fitbit/add_zero_timestamp.py
    ```

 !!! note
 All columns except `DEVICE_ID` are parsed from `JSON_FITBIT_COLUMN`. `JSON_FITBIT_COLUMN` is a string column containing the JSON objects returned by Fitbit's API. See an example of the raw data RAPIDS expects for this data stream:

 ??? example "Example of the raw data RAPIDS expects for this data stream"

 |device_id |fitbit_data |
 |-- |--- |
 |a748ee1a-1d0b-4ae9-9074-279a2b6ba524 |{"activities-heart":[{"dateTime":"2020-10-07","value":{"customHeartRateZones":[],"heartRateZones":[{"caloriesOut":1200.6102,"max":88,"min":31,"minutes":1058,"name":"Out of Range"},{"caloriesOut":760.3020,"max":120,"min":86,"minutes":366,"name":"Fat Burn"},{"caloriesOut":15.2048,"max":146,"min":120,"minutes":2,"name":"Cardio"},{"caloriesOut":0,"max":221,"min":148,"minutes":0,"name":"Peak"}],"restingHeartRate":72}}],"activities-heart-intraday":{"dataset":[{"time":"00:00:00","value":68},{"time":"00:01:00","value":67},{"time":"00:02:00","value":67},...],"datasetInterval":1,"datasetType":"minute"}}
 |a748ee1a-1d0b-4ae9-9074-279a2b6ba524 |{"activities-heart":[{"dateTime":"2020-10-08","value":{"customHeartRateZones":[],"heartRateZones":[{"caloriesOut":1100.1120,"max":89,"min":30,"minutes":921,"name":"Out of Range"},{"caloriesOut":660.0012,"max":118,"min":82,"minutes":361,"name":"Fat Burn"},{"caloriesOut":23.7088,"max":142,"min":108,"minutes":3,"name":"Cardio"},{"caloriesOut":0,"max":221,"min":148,"minutes":0,"name":"Peak"}],"restingHeartRate":70}}],"activities-heart-intraday":{"dataset":[{"time":"00:00:00","value":77},{"time":"00:01:00","value":75},{"time":"00:02:00","value":73},...],"datasetInterval":1,"datasetType":"minute"}}
 |a748ee1a-1d0b-4ae9-9074-279a2b6ba524 |{"activities-heart":[{"dateTime":"2020-10-09","value":{"customHeartRateZones":[],"heartRateZones":[{"caloriesOut":750.3615,"max":77,"min":30,"minutes":851,"name":"Out of Range"},{"caloriesOut":734.1516,"max":107,"min":77,"minutes":550,"name":"Fat Burn"},{"caloriesOut":131.8579,"max":130,"min":107,"minutes":29,"name":"Cardio"},{"caloriesOut":0,"max":220,"min":130,"minutes":0,"name":"Peak"}],"restingHeartRate":69}}],"activities-heart-intraday":{"dataset":[{"time":"00:00:00","value":90},{"time":"00:01:00","value":89},{"time":"00:02:00","value":88},...],"datasetInterval":1,"datasetType":"minute"}}

??? info “FITBIT_SLEEP_SUMMARY”

RAPIDS_COLUMN_MAPPINGS

RAPIDS column	Stream column
TIMESTAMP	FLAG_TO_MUTATE
LOCAL_DATE_TIME	FLAG_TO_MUTATE
LOCAL_START_DATE_TIME	FLAG_TO_MUTATE
LOCAL_END_DATE_TIME	FLAG_TO_MUTATE
DEVICE_ID	device_id
EFFICIENCY	FLAG_TO_MUTATE
MINUTES_AFTER_WAKEUP	FLAG_TO_MUTATE
MINUTES_ASLEEP	FLAG_TO_MUTATE
MINUTES_AWAKE	FLAG_TO_MUTATE
MINUTES_TO_FALL_ASLEEP	FLAG_TO_MUTATE
MINUTES_IN_BED	FLAG_TO_MUTATE
IS_MAIN_SLEEP	FLAG_TO_MUTATE
TYPE	FLAG_TO_MUTATE

MUTATION

- **COLUMN_MAPPINGS**

Script column	Stream column
JSON_FITBIT_COLUMN	fitbit_data

- **SCRIPTS**

    ```bash
    - src/data/streams/mutations/fitbit/parse_sleep_summary_json.py
    - src/data/streams/mutations/fitbit/add_local_date_time.py
    - src/data/streams/mutations/fitbit/add_zero_timestamp.py
    ```

 !!! note

 Fitbit API has two versions for sleep data, v1 and v1.2. We support both but ignore v1's `count_awake`, `duration_awake`, and `count_awakenings`, `count_restless`, `duration_restless` columns.

 All columns except `DEVICE_ID` are parsed from `JSON_FITBIT_COLUMN`. `JSON_FITBIT_COLUMN` is a string column containing the JSON objects returned by Fitbit's API. See an example of the raw data RAPIDS expects for this data stream:

 ??? example "Example of the expected raw data"

 |device_id |fitbit_data |
 |-- |--- |
 |a748ee1a-1d0b-4ae9-9074-279a2b6ba524 |{"sleep":[{"dateOfSleep":"2020-10-10","duration":3600000,"efficiency":92,"endTime":"2020-10-10T16:37:00.000","infoCode":2,"isMainSleep":false,"levels":{"data":[{"dateTime":"2020-10-10T15:36:30.000","level":"restless","seconds":60},{"dateTime":"2020-10-10T15:37:30.000","level":"asleep","seconds":660},{"dateTime":"2020-10-10T15:48:30.000","level":"restless","seconds":60},...], "summary":{"asleep":{"count":0,"minutes":56},"awake":{"count":0,"minutes":0},"restless":{"count":3,"minutes":4}}},"logId":26315914306,"minutesAfterWakeup":0,"minutesAsleep":55,"minutesAwake":5,"minutesToFallAsleep":0,"startTime":"2020-10-10T15:36:30.000","timeInBed":60,"type":"classic"},{"dateOfSleep":"2020-10-10","duration":22980000,"efficiency":88,"endTime":"2020-10-10T08:10:00.000","infoCode":0,"isMainSleep":true,"levels":{"data":[{"dateTime":"2020-10-10T01:46:30.000","level":"light","seconds":420},{"dateTime":"2020-10-10T01:53:30.000","level":"deep","seconds":1230},{"dateTime":"2020-10-10T02:14:00.000","level":"light","seconds":360},...], "summary":{"deep":{"count":3,"minutes":92,"thirtyDayAvgMinutes":0},"light":{"count":29,"minutes":193,"thirtyDayAvgMinutes":0},"rem":{"count":4,"minutes":33,"thirtyDayAvgMinutes":0},"wake":{"count":28,"minutes":65,"thirtyDayAvgMinutes":0}}},"logId":26311786557,"minutesAfterWakeup":0,"minutesAsleep":318,"minutesAwake":65,"minutesToFallAsleep":0,"startTime":"2020-10-10T01:46:30.000","timeInBed":383,"type":"stages"}],"summary":{"stages":{"deep":92,"light":193,"rem":33,"wake":65},"totalMinutesAsleep":373,"totalSleepRecords":2,"totalTimeInBed":443}}
 |a748ee1a-1d0b-4ae9-9074-279a2b6ba524 |{"sleep":[{"dateOfSleep":"2020-10-11","duration":41640000,"efficiency":89,"endTime":"2020-10-11T11:47:00.000","infoCode":0,"isMainSleep":true,"levels":{"data":[{"dateTime":"2020-10-11T00:12:30.000","level":"wake","seconds":450},{"dateTime":"2020-10-11T00:20:00.000","level":"light","seconds":870},{"dateTime":"2020-10-11T00:34:30.000","level":"wake","seconds":780},...], "summary":{"deep":{"count":4,"minutes":52,"thirtyDayAvgMinutes":62},"light":{"count":32,"minutes":442,"thirtyDayAvgMinutes":364},"rem":{"count":6,"minutes":68,"thirtyDayAvgMinutes":58},"wake":{"count":29,"minutes":132,"thirtyDayAvgMinutes":94}}},"logId":26589710670,"minutesAfterWakeup":1,"minutesAsleep":562,"minutesAwake":132,"minutesToFallAsleep":0,"startTime":"2020-10-11T00:12:30.000","timeInBed":694,"type":"stages"}],"summary":{"stages":{"deep":52,"light":442,"rem":68,"wake":132},"totalMinutesAsleep":562,"totalSleepRecords":1,"totalTimeInBed":694}}
 |a748ee1a-1d0b-4ae9-9074-279a2b6ba524 |{"sleep":[{"dateOfSleep":"2020-10-12","duration":28980000,"efficiency":93,"endTime":"2020-10-12T09:34:30.000","infoCode":0,"isMainSleep":true,"levels":{"data":[{"dateTime":"2020-10-12T01:31:00.000","level":"wake","seconds":600},{"dateTime":"2020-10-12T01:41:00.000","level":"light","seconds":60},{"dateTime":"2020-10-12T01:42:00.000","level":"deep","seconds":2340},...], "summary":{"deep":{"count":4,"minutes":63,"thirtyDayAvgMinutes":59},"light":{"count":27,"minutes":257,"thirtyDayAvgMinutes":364},"rem":{"count":5,"minutes":94,"thirtyDayAvgMinutes":58},"wake":{"count":24,"minutes":69,"thirtyDayAvgMinutes":95}}},"logId":26589710673,"minutesAfterWakeup":0,"minutesAsleep":415,"minutesAwake":68,"minutesToFallAsleep":0,"startTime":"2020-10-12T01:31:00.000","timeInBed":483,"type":"stages"}],"summary":{"stages":{"deep":63,"light":257,"rem":94,"wake":69},"totalMinutesAsleep":415,"totalSleepRecords":1,"totalTimeInBed":483}}

??? info “FITBIT_SLEEP_INTRADAY”

RAPIDS_COLUMN_MAPPINGS

RAPIDS column	Stream column
TIMESTAMP	FLAG_TO_MUTATE
LOCAL_DATE_TIME	FLAG_TO_MUTATE
DEVICE_ID	device_id
TYPE_EPISODE_ID	FLAG_TO_MUTATE
DURATION	FLAG_TO_MUTATE
IS_MAIN_SLEEP	FLAG_TO_MUTATE
TYPE	FLAG_TO_MUTATE
LEVEL	FLAG_TO_MUTATE

MUTATION

- **COLUMN_MAPPINGS**

Script column	Stream column
JSON_FITBIT_COLUMN	fitbit_data

- **SCRIPTS**

    ```bash
    - src/data/streams/mutations/fitbit/parse_sleep_intraday_json.py
    - src/data/streams/mutations/fitbit/add_zero_timestamp.py
    ```

 !!! note

 Fitbit API has two versions for sleep data, v1 and v1.2, we support both.

 All columns except `DEVICE_ID` are parsed from `JSON_FITBIT_COLUMN`. `JSON_FITBIT_COLUMN` is a string column containing the JSON objects returned by Fitbit's API. See an example of the raw data RAPIDS expects for this data stream:

 ??? example "Example of the expected raw data"

 |device_id |fitbit_data |
 |-- |--- |
 |a748ee1a-1d0b-4ae9-9074-279a2b6ba524 |{"sleep":[{"dateOfSleep":"2020-10-10","duration":3600000,"efficiency":92,"endTime":"2020-10-10T16:37:00.000","infoCode":2,"isMainSleep":false,"levels":{"data":[{"dateTime":"2020-10-10T15:36:30.000","level":"restless","seconds":60},{"dateTime":"2020-10-10T15:37:30.000","level":"asleep","seconds":660},{"dateTime":"2020-10-10T15:48:30.000","level":"restless","seconds":60},...], "summary":{"asleep":{"count":0,"minutes":56},"awake":{"count":0,"minutes":0},"restless":{"count":3,"minutes":4}}},"logId":26315914306,"minutesAfterWakeup":0,"minutesAsleep":55,"minutesAwake":5,"minutesToFallAsleep":0,"startTime":"2020-10-10T15:36:30.000","timeInBed":60,"type":"classic"},{"dateOfSleep":"2020-10-10","duration":22980000,"efficiency":88,"endTime":"2020-10-10T08:10:00.000","infoCode":0,"isMainSleep":true,"levels":{"data":[{"dateTime":"2020-10-10T01:46:30.000","level":"light","seconds":420},{"dateTime":"2020-10-10T01:53:30.000","level":"deep","seconds":1230},{"dateTime":"2020-10-10T02:14:00.000","level":"light","seconds":360},...], "summary":{"deep":{"count":3,"minutes":92,"thirtyDayAvgMinutes":0},"light":{"count":29,"minutes":193,"thirtyDayAvgMinutes":0},"rem":{"count":4,"minutes":33,"thirtyDayAvgMinutes":0},"wake":{"count":28,"minutes":65,"thirtyDayAvgMinutes":0}}},"logId":26311786557,"minutesAfterWakeup":0,"minutesAsleep":318,"minutesAwake":65,"minutesToFallAsleep":0,"startTime":"2020-10-10T01:46:30.000","timeInBed":383,"type":"stages"}],"summary":{"stages":{"deep":92,"light":193,"rem":33,"wake":65},"totalMinutesAsleep":373,"totalSleepRecords":2,"totalTimeInBed":443}}
 |a748ee1a-1d0b-4ae9-9074-279a2b6ba524 |{"sleep":[{"dateOfSleep":"2020-10-11","duration":41640000,"efficiency":89,"endTime":"2020-10-11T11:47:00.000","infoCode":0,"isMainSleep":true,"levels":{"data":[{"dateTime":"2020-10-11T00:12:30.000","level":"wake","seconds":450},{"dateTime":"2020-10-11T00:20:00.000","level":"light","seconds":870},{"dateTime":"2020-10-11T00:34:30.000","level":"wake","seconds":780},...], "summary":{"deep":{"count":4,"minutes":52,"thirtyDayAvgMinutes":62},"light":{"count":32,"minutes":442,"thirtyDayAvgMinutes":364},"rem":{"count":6,"minutes":68,"thirtyDayAvgMinutes":58},"wake":{"count":29,"minutes":132,"thirtyDayAvgMinutes":94}}},"logId":26589710670,"minutesAfterWakeup":1,"minutesAsleep":562,"minutesAwake":132,"minutesToFallAsleep":0,"startTime":"2020-10-11T00:12:30.000","timeInBed":694,"type":"stages"}],"summary":{"stages":{"deep":52,"light":442,"rem":68,"wake":132},"totalMinutesAsleep":562,"totalSleepRecords":1,"totalTimeInBed":694}}
 |a748ee1a-1d0b-4ae9-9074-279a2b6ba524 |{"sleep":[{"dateOfSleep":"2020-10-12","duration":28980000,"efficiency":93,"endTime":"2020-10-12T09:34:30.000","infoCode":0,"isMainSleep":true,"levels":{"data":[{"dateTime":"2020-10-12T01:31:00.000","level":"wake","seconds":600},{"dateTime":"2020-10-12T01:41:00.000","level":"light","seconds":60},{"dateTime":"2020-10-12T01:42:00.000","level":"deep","seconds":2340},...], "summary":{"deep":{"count":4,"minutes":63,"thirtyDayAvgMinutes":59},"light":{"count":27,"minutes":257,"thirtyDayAvgMinutes":364},"rem":{"count":5,"minutes":94,"thirtyDayAvgMinutes":58},"wake":{"count":24,"minutes":69,"thirtyDayAvgMinutes":95}}},"logId":26589710673,"minutesAfterWakeup":0,"minutesAsleep":415,"minutesAwake":68,"minutesToFallAsleep":0,"startTime":"2020-10-12T01:31:00.000","timeInBed":483,"type":"stages"}],"summary":{"stages":{"deep":63,"light":257,"rem":94,"wake":69},"totalMinutesAsleep":415,"totalSleepRecords":1,"totalTimeInBed":483}}

??? info “FITBIT_STEPS_SUMMARY”

RAPIDS_COLUMN_MAPPINGS

RAPIDS column	Stream column
TIMESTAMP	FLAG_TO_MUTATE
DEVICE_ID	device_id
LOCAL_DATE_TIME	FLAG_TO_MUTATE
STEPS	FLAG_TO_MUTATE

MUTATION

- **COLUMN_MAPPINGS**

Script column	Stream column
JSON_FITBIT_COLUMN	fitbit_data

- **SCRIPTS**

    ```bash
    - src/data/streams/mutations/fitbit/parse_steps_summary_json.py
    - src/data/streams/mutations/fitbit/add_zero_timestamp.py
    ```

 !!! note
 `TIMESTAMP`, `LOCAL_DATE_TIME`, and `STEPS` are parsed from `JSON_FITBIT_COLUMN`. `JSON_FITBIT_COLUMN` is a string column containing the JSON objects returned by Fitbit's API. See an example of the raw data RAPIDS expects for this data stream:

 ??? example "Example of the expected raw data"

 |device_id |fitbit_data |
 |-- |--- |
 |a748ee1a-1d0b-4ae9-9074-279a2b6ba524 |"activities-steps":[{"dateTime":"2020-10-07","value":"1775"}],"activities-steps-intraday":{"dataset":[{"time":"00:00:00","value":5},{"time":"00:01:00","value":3},{"time":"00:02:00","value":0},...],"datasetInterval":1,"datasetType":"minute"}}
 |a748ee1a-1d0b-4ae9-9074-279a2b6ba524 |"activities-steps":[{"dateTime":"2020-10-08","value":"3201"}],"activities-steps-intraday":{"dataset":[{"time":"00:00:00","value":14},{"time":"00:01:00","value":11},{"time":"00:02:00","value":10},...],"datasetInterval":1,"datasetType":"minute"}}
 |a748ee1a-1d0b-4ae9-9074-279a2b6ba524 |"activities-steps":[{"dateTime":"2020-10-09","value":"998"}],"activities-steps-intraday":{"dataset":[{"time":"00:00:00","value":0},{"time":"00:01:00","value":0},{"time":"00:02:00","value":0},...],"datasetInterval":1,"datasetType":"minute"}}

??? info “FITBIT_STEPS_INTRADAY”

RAPIDS_COLUMN_MAPPINGS

RAPIDS column	Stream column
TIMESTAMP	FLAG_TO_MUTATE
DEVICE_ID	device_id
LOCAL_DATE_TIME	FLAG_TO_MUTATE
STEPS	FLAG_TO_MUTATE

MUTATION

- **COLUMN_MAPPINGS**

Script column	Stream column
JSON_FITBIT_COLUMN	fitbit_data

- **SCRIPTS**

    ```bash
    - src/data/streams/mutations/fitbit/parse_steps_intraday_json.py
    - src/data/streams/mutations/fitbit/add_zero_timestamp.py
    ```

 !!! note
 `TIMESTAMP`, `LOCAL_DATE_TIME`, and `STEPS` are parsed from `JSON_FITBIT_COLUMN`. `JSON_FITBIT_COLUMN` is a string column containing the JSON objects returned by [Fitbit's API](https://dev.fitbit.com/build/reference/web-api/activity/#get-activity-intraday-time-series). See an example of the raw data RAPIDS expects for this data stream:

 ??? example "Example of the expected raw data"

 |device_id |fitbit_data |
 |-- |--- |
 |a748ee1a-1d0b-4ae9-9074-279a2b6ba524 |"activities-steps":[{"dateTime":"2020-10-07","value":"1775"}],"activities-steps-intraday":{"dataset":[{"time":"00:00:00","value":5},{"time":"00:01:00","value":3},{"time":"00:02:00","value":0},...],"datasetInterval":1,"datasetType":"minute"}}
 |a748ee1a-1d0b-4ae9-9074-279a2b6ba524 |"activities-steps":[{"dateTime":"2020-10-08","value":"3201"}],"activities-steps-intraday":{"dataset":[{"time":"00:00:00","value":14},{"time":"00:01:00","value":11},{"time":"00:02:00","value":10},...],"datasetInterval":1,"datasetType":"minute"}}
 |a748ee1a-1d0b-4ae9-9074-279a2b6ba524 |"activities-steps":[{"dateTime":"2020-10-09","value":"998"}],"activities-steps-intraday":{"dataset":[{"time":"00:00:00","value":0},{"time":"00:01:00","value":0},{"time":"00:02:00","value":0},...],"datasetInterval":1,"datasetType":"minute"}}

 The format.yaml maps and transforms columns in your raw data stream to the mandatory columns RAPIDS needs for Fitbit sensors. This file is at:

src/data/streams/fitbitparsed_mysql/format.yaml

If you want to use this stream with your data, modify every sensor in format.yaml to map all columns except TIMESTAMP in [RAPIDS_COLUMN_MAPPINGS] to your raw data column names.

All columns are mandatory; however, all except device_id and local_date_time can be empty if you don’t have that data. Just have in mind that some features will be empty if some of these columns are empty.

??? info “FITBIT_HEARTRATE_SUMMARY”

RAPIDS_COLUMN_MAPPINGS

RAPIDS column	Stream column
TIMESTAMP	FLAG_TO_MUTATE
LOCAL_DATE_TIME	local_date_time
DEVICE_ID	device_id
HEARTRATE_DAILY_RESTINGHR	heartrate_daily_restinghr
HEARTRATE_DAILY_CALORIESOUTOFRANGE	heartrate_daily_caloriesoutofrange
HEARTRATE_DAILY_CALORIESFATBURN	heartrate_daily_caloriesfatburn
HEARTRATE_DAILY_CALORIESCARDIO	heartrate_daily_caloriescardio
HEARTRATE_DAILY_CALORIESPEAK	heartrate_daily_caloriespeak

MUTATION

- **COLUMN_MAPPINGS** (None)

- **SCRIPTS**

    ```bash
    src/data/streams/mutations/fitbit/add_zero_timestamp.py
    ```

!!! note
 `add_zero_timestamp` adds an all-zero column called `timestamp` that will be filled in later in the pipeline by `readable_time.R` converting LOCAL_DATE_TIME to a unix timestamp taking into account single or multiple time zones.

 ??? example "Example of the raw data RAPIDS expects for this data stream"

 |device_id |local_date_time |heartrate_daily_restinghr |heartrate_daily_caloriesoutofrange |heartrate_daily_caloriesfatburn |heartrate_daily_caloriescardio |heartrate_daily_caloriespeak |
 |-------------------------------------- |----------------- |------- |-------------- |------------- |------------ |-------|
 |a748ee1a-1d0b-4ae9-9074-279a2b6ba524 |2020-10-07 00:00:00 |72 |1200.6102 |760.3020 |15.2048 |0 |
 |a748ee1a-1d0b-4ae9-9074-279a2b6ba524 |2020-10-08 00:00:00 |70 |1100.1120 |660.0012 |23.7088 |0 |
 |a748ee1a-1d0b-4ae9-9074-279a2b6ba524 |2020-10-09 00:00:00 |69 |750.3615 |734.1516 |131.8579 |0 |

??? info “FITBIT_HEARTRATE_INTRADAY”

RAPIDS_COLUMN_MAPPINGS

RAPIDS column	Stream column
TIMESTAMP	FLAG_TO_MUTATE
LOCAL_DATE_TIME	local_date_time
DEVICE_ID	device_id
HEARTRATE	heartrate
HEARTRATE_ZONE	heartrate_zone

MUTATION

- **COLUMN_MAPPINGS** (None)

- **SCRIPTS**

    ```bash
    src/data/streams/mutations/fitbit/add_zero_timestamp.py
    ```

!!! note
 `add_zero_timestamp` adds an all-zero column called `timestamp` that will be filled in later in the pipeline by `readable_time.R` converting LOCAL_DATE_TIME to a unix timestamp taking into account single or multiple time zones.

 ??? example "Example of the raw data RAPIDS expects for this data stream"

 |device_id |local_date_time |heartrate |heartrate_zone |
 |-------------------------------------- |---------------------- |--------- |--------------- |
 |a748ee1a-1d0b-4ae9-9074-279a2b6ba524 |2020-10-07 00:00:00 |68 |outofrange |
 |a748ee1a-1d0b-4ae9-9074-279a2b6ba524 |2020-10-07 00:01:00 |67 |outofrange |
 |a748ee1a-1d0b-4ae9-9074-279a2b6ba524 |2020-10-07 00:02:00 |67 |outofrange |

??? info “FITBIT_SLEEP_SUMMARY”

RAPIDS_COLUMN_MAPPINGS

RAPIDS column	Stream column
TIMESTAMP	FLAG_TO_MUTATE
LOCAL_DATE_TIME	FLAG_TO_MUTATE
LOCAL_START_DATE_TIME	local_start_date_time
LOCAL_END_DATE_TIME	local_end_date_time
DEVICE_ID	device_id
EFFICIENCY	efficiency
MINUTES_AFTER_WAKEUP	minutes_after_wakeup
MINUTES_ASLEEP	minutes_asleep
MINUTES_AWAKE	minutes_awake
MINUTES_TO_FALL_ASLEEP	minutes_to_fall_asleep
MINUTES_IN_BED	minutes_in_bed
IS_MAIN_SLEEP	is_main_sleep
TYPE	type

MUTATION

- **COLUMN_MAPPINGS** (None)

- **SCRIPTS**

    ```bash
    - src/data/streams/mutations/fitbit/add_local_date_time.py
    - src/data/streams/mutations/fitbit/add_zero_timestamp.py
    ```

!!! note
 `add_zero_timestamp` adds an all-zero column called `timestamp` that will be filled in later in the pipeline by `readable_time.R` converting LOCAL_DATE_TIME to a unix timestamp taking into account single or multiple time zones.

 Fitbit API has two versions for sleep data, v1 and v1.2. We support both but ignore v1's `count_awake`, `duration_awake`, and `count_awakenings`, `count_restless`, `duration_restless` columns.

 ??? example "Example of the expected raw data"

 |device_id |local_start_date_time |local_end_date_time |efficiency |minutes_after_wakeup |minutes_asleep |minutes_awake |minutes_to_fall_asleep |minutes_in_bed |is_main_sleep |type |
 |-------------------------------------- |---------------------- |---------------------- |----------- |--------------------- |--------------- |-------------- |----------------------- |--------------- |-------------- |-------- |
 |a748ee1a-1d0b-4ae9-9074-279a2b6ba524 |2020-10-10 15:36:30 |2020-10-10 16:37:00 |92 |0 |55 |5 |0 |60 |0 |classic |
 |a748ee1a-1d0b-4ae9-9074-279a2b6ba524 |2020-10-10 01:46:30 |2020-10-10 08:10:00 |88 |0 |318 |65 |0 |383 |1 |stages |
 |a748ee1a-1d0b-4ae9-9074-279a2b6ba524 |2020-10-11 00:12:30 |2020-10-11 11:47:00 |89 |1 |562 |132 |0 |694 |1 |stages |
 |a748ee1a-1d0b-4ae9-9074-279a2b6ba524 |2020-10-12 01:31:00 |2020-10-12 09:34:30 |93 |0 |415 |68 |0 |483 |1 |stages |

??? info “FITBIT_SLEEP_INTRADAY”

RAPIDS_COLUMN_MAPPINGS

RAPIDS column	Stream column
TIMESTAMP	FLAG_TO_MUTATE
LOCAL_DATE_TIME	local_date_time
DEVICE_ID	device_id
TYPE_EPISODE_ID	type_episode_id
DURATION	duration
IS_MAIN_SLEEP	is_main_sleep
TYPE	type
LEVEL	level

MUTATION

- **COLUMN_MAPPINGS** (None)

- **SCRIPTS**

    ```bash
    src/data/streams/mutations/fitbit/add_zero_timestamp.py
    ```

!!! note
 `add_zero_timestamp` adds an all-zero column called `timestamp` that will be filled in later in the pipeline by `readable_time.R` converting LOCAL_DATE_TIME to a unix timestamp taking into account single or multiple time zones.

 Fitbit API has two versions for sleep data, v1 and v1.2, we support both.

 ??? example "Example of the expected raw data"

 |device_id |type_episode_id |local_date_time |duration |level |is_main_sleep |type |
 |------------------------------------ |---------------- |------------------- |--------- |---------- |-------------- |-------------- |
 |a748ee1a-1d0b-4ae9-9074-279a2b6ba524 |0 |2020-10-10 15:36:30 |60 |restless |0 |classic |
 |a748ee1a-1d0b-4ae9-9074-279a2b6ba524 |0 |2020-10-10 15:37:30 |660 |asleep |0 |classic |
 |a748ee1a-1d0b-4ae9-9074-279a2b6ba524 |0 |2020-10-10 15:48:30 |60 |restless |0 |classic |
 |a748ee1a-1d0b-4ae9-9074-279a2b6ba524 |... |... |... |... |... |... |
 |a748ee1a-1d0b-4ae9-9074-279a2b6ba524 |1 |2020-10-10 01:46:30 |420 |light |1 |stages |
 |a748ee1a-1d0b-4ae9-9074-279a2b6ba524 |1 |2020-10-10 01:53:30 |1230 |deep |1 |stages |

??? info “FITBIT_STEPS_SUMMARY”

RAPIDS_COLUMN_MAPPINGS

RAPIDS column	Stream column
TIMESTAMP	FLAG_TO_MUTATE
DEVICE_ID	device_id
LOCAL_DATE_TIME	local_date_time
STEPS	steps

MUTATION

- **COLUMN_MAPPINGS** (None)

- **SCRIPTS**

    ```bash
    src/data/streams/mutations/fitbit/add_zero_timestamp.py
    ```

!!! note
 `add_zero_timestamp` adds an all-zero column called `timestamp` that will be filled in later in the pipeline by `readable_time.R` converting LOCAL_DATE_TIME to a unix timestamp taking into account single or multiple time zones.

 ??? example "Example of the expected raw data"

 |device_id |local_date_time |steps |
 |-------------------------------------- |---------------------- |--------- |
 |a748ee1a-1d0b-4ae9-9074-279a2b6ba524 |2020-10-07 |1775 |
 |a748ee1a-1d0b-4ae9-9074-279a2b6ba524 |2020-10-08 |3201 |
 |a748ee1a-1d0b-4ae9-9074-279a2b6ba524 |2020-10-09 |998 |

??? info “FITBIT_STEPS_INTRADAY”

RAPIDS_COLUMN_MAPPINGS

RAPIDS column	Stream column
TIMESTAMP	FLAG_TO_MUTATE
DEVICE_ID	device_id
LOCAL_DATE_TIME	local_date_time
STEPS	steps

MUTATION

- **COLUMN_MAPPINGS** (None)

- **SCRIPTS**

    ```bash
    src/data/streams/mutations/fitbit/add_zero_timestamp.py
    ```

!!! note
 `add_zero_timestamp` adds an all-zero column called `timestamp` that will be filled in later in the pipeline by `readable_time.R` converting LOCAL_DATE_TIME to a unix timestamp taking into account single or multiple time zones.

 ??? example "Example of the expected raw data"

 |device_id |local_date_time |steps |
 |-------------------------------------- |---------------------- |--------- |
 |a748ee1a-1d0b-4ae9-9074-279a2b6ba524 |2020-10-07 00:00:00 |5 |
 |a748ee1a-1d0b-4ae9-9074-279a2b6ba524 |2020-10-07 00:01:00 |3 |
 |a748ee1a-1d0b-4ae9-9074-279a2b6ba524 |2020-10-07 00:02:00 |0 |

Data Quality Visualizations

We showcase these visualizations with a test study that collected 14 days of smartphone and Fitbit data from two participants (example01 and example02) and extracted behavioral features within five time segments (daily, morning, afternoon, evening, and night).

!!! note
Time segments (e.g. daily, morning, etc.) can have multiple instances (day 1, day 2, or morning 1, morning 2, etc.)

1. Histograms of phone data yield

RAPIDS provides two histograms that show the number of time segment instances that had a certain ratio of valid yielded minutes and hours, respectively. A valid yielded minute has at least 1 row of data from any smartphone sensor and a valid yielded hour contains at least M valid minutes.

These plots can be used as a rough indication of the smartphone monitoring coverage during a study aggregated across all participants. For example, the figure below shows a valid yielded minutes histogram for daily segments and we can infer that the monitoring coverage was very good since almost all segments contain at least 90 to 100% of the expected sensed minutes.

!!! example
Click here to see an example of these interactive visualizations in HTML format

 Histogram of the data yielded minute ratio for a single participant during five time segments (daily, morning, afternoon, evening, and night)

2. Heatmaps of overall data yield

These heatmaps are a break down per time segment and per participant of Visualization 1. Heatmap’s rows represent participants, columns represent time segment instances and the cells’ color represent the valid yielded minute or hour ratio for a participant during a time segment instance.

As different participants might join a study on different dates and time segments can be of any length and start on any day, the x-axis can be labelled with the absolute time of each time segment instance or the time delta between each time segment instance and the start of the first instance for each participant. These plots provide a quick study overview of the monitoring coverage per person and per time segment.

The figure below shows the heatmap of the valid yielded minute ratio for participants example01 and example02 on daily segments and, as we inferred from the previous histogram, the lighter (yellow) color on most time segment instances (cells) indicate both phones sensed data without interruptions for most days (except for the first and last ones).

=== “[ABSOLUTE_TIME]”

!!! example
 Click [here](../../img/hm-data-yield-participants-absolute-time.html) to see an example of these interactive visualizations in HTML format

<figure>

 <figcaption>Overall compliance heatmap for all participants</figcaption>
</figure>

=== “[RELATIVE_TIME]”

!!! example
 Click [here](../../img/hm-data-yield-participants-relative-time.html) to see an example of these interactive visualizations in HTML format

<figure>

 <figcaption>Overall compliance heatmap for all participants</figcaption>
</figure>

3. Heatmap of recorded phone sensors

In these heatmaps rows represent time segment instances, columns represent minutes since the start of a time segment instance, and cells’ color shows the number of phone sensors that logged at least one row of data during those 1-minute windows.

RAPIDS creates a plot per participant and per time segment and can be used as a rough indication of whether time-based sensors were following their sensing schedule (e.g. if location was being sensed every 2 minutes).

The figure below shows this heatmap for phone sensors collected by participant example01 in daily time segments from Apr 23rd 2020 to May 4th 2020. We can infer that for most of the monitoring time, the participant’s phone logged data from at least 7 sensors each minute.

!!! example
Click here to see an example of these interactive visualizations in HTML format

 Heatmap of the recorded phone sensors per minute and per time segment of a single participant

4. Heatmap of sensor row count

These heatmaps are a per-sensor breakdown of Visualization 1 and Visualization 2. Note that the second row (ratio of valid yielded minutes) of this heatmap matches the respective participant (bottom) row the screenshot in Visualization 2.

In these heatmaps rows represent phone or Fitbit sensors, columns represent time segment instances and cell’s color shows the normalized (0 to 1) row count of each sensor within a time segment instance. A grey cell represents missing data in that time segment instance. RAPIDS creates one heatmap per participant and they can be used to judge missing data on a per participant and per sensor basis.

The figure below shows data for 14 phone sensors (including data yield) of example01’s daily segments. From the top two rows, we can see that the phone was sensing data for most of the monitoring period (as suggested by Figure 3 and Figure 4). We can also infer how phone usage influenced the different sensor streams; there are peaks of screen events during the first day (Apr 23rd), peaks of location coordinates on Apr 26th and Apr 30th, and no sent or received SMS except for Apr 23rd, Apr 29th and Apr 30th (unlabeled row between screen and locations).

!!! example
Click here to see an example of these interactive visualizations in HTML format

 Heatmap of the sensor row count per time segment of a single participant

Feature Visualizations

1. Heatmap Correlation Matrix

Columns and rows are the behavioral features computed in RAPIDS, cells’ color represents the correlation coefficient between all days of data for every pair of features of all participants.

The user can specify a minimum number of observations (time segment instances) required to compute the correlation between two features using the MIN_ROWS_RATIO parameter (0.5 by default) and the correlation method (Pearson, Spearman or Kendall) with the CORR_METHOD parameter. In addition, this plot can be configured to only display correlation coefficients above a threshold using the CORR_THRESHOLD parameter (0.1 by default).

!!! example
Click here to see an example of these interactive visualizations in HTML format

 Correlation matrix heatmap for all the features of all participants

 _static/comment-close.png

_static/comment.png

_static/comment-bright.png

_static/file.png

_static/down-pressed.png

_static/down.png

_static/minus.png

_static/plus.png

_static/ajax-loader.gif

nav.xhtml

 Table of Contents

 		
 Welcome to Read the Docs

_static/up-pressed.png

_static/up.png

